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[1] Maxwell’s equations can be used to demonstrate that the components of a static
magnetic field in a region of space devoid of sources are not independent. This means that
magnetometers that measure a single component of the magnetic field can potentially
obtain all of three components of the field external to a source. Here we present an
improved technique in the Fourier domain which can obtain the complete vector field
planar map from just the planar map of one component. This technique is fast, robust, does
not rely on any specific source type or configuration, and does not require the formulation
of an inverse problem. An in-depth analysis of the advantages and shortcomings of
the technique is presented, demonstrating that high-quality three-component field maps
with virtually no information loss can be obtained when proper sensor and mapping
configurations are used. Several results derived from both synthetic and experimental data
are presented. In particular, practical cases are shown where vector maps can assist the
analysis of magnetic properties of geological samples. MATLAB

1

routines implementing
the basic vector map calculation algorithm are available as auxiliary materials and
can be readily adapted for processing magnetic data obtained from a variety of
magnetic sensors.
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1. Introduction

[2] Magnetic studies of earth and planetary materials can
greatly benefit from an understanding of magnetization at
fine spatial scales. Scanning magnetometry is a powerful
tool for this purpose, because it can map inhomogenous
magnetization at submillimeter scales. Since both the mag-
netic field and magnetization are vector quantities, the ideal
scanning magnetometer would measure all three orthogonal
components of the field above the sample. However, owing
to technical difficulties, most high-resolution scanning
magnetometers measure a single component of the magnetic
field. For instance, nearly all superconducting quantum
interference device (SQUID) microscopes measure solely
the vertical component [Weiss et al., 2007].
[3] In theory, noiseless measurements of a single compo-

nent of the magnetic field everywhere in an infinite hori-
zontal plane above a sample will contain all of the
information about the field everywhere in the half-space
above the sample [Lima et al., 2006; Roth et al., 1989; Tan
et al., 1996]. However, a number of studies in a variety of
disciplines have demonstrated that, in practice, knowledge
of all three components of the field better constrain the
vector magnetic field and its sources compared to just
single-component data. For instance, it has recently been

demonstrated that inversions of three-component biomag-
netic field maps yield more accurate current distribution
solutions than inversions of any individual single-component
maps [Arturi et al., 2004; Bradshaw et al., 1999;Di Rienzo et
al., 2005]. Likewise, there is a growing consensus that
modeling of the geomagnetic field [Langel et al., 1982;
Langel and Hinze, 1998; Purucker, 1990] and the use of
aeromagnetic field maps for constraining crustal magnetiza-
tion [Langel et al., 1982] based on three-component maps
yield more accurate and stable solutions than those based on
total magnetic field (i.e., field strength) maps. The main
reason for the practical advantage of vector data is that given
that infinitely many magnetization distributions can produce
a given magnetic field pattern outside the magnetized region
[Lima et al., 2006], having three times the number of field
constraints might provide more stable, accurate magnetiza-
tion inversions in the face of inevitable computational and
measurement noise (see Appendix A).
[4] Direct measurement of the three components of the

magnetic field is difficult in scanning magnetometry be-
cause sensors cannot be made arbitrarily small owing to
physical limitations set by the small sensor-to-sample dis-
tance and because sensitivity usually scales with the size of
the sensor. The space required for multiple sensors typically
means that the effective sensor-to-sample distance must be
larger than that of single-sensor systems, which implies that
multiple-sensor systems usually have relatively lower spa-
tial resolution and moment resolution. This is of particular
concern when sensors for measuring the tangential field are
to be added to vertical-component single-axis systems like

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, B06102, doi:10.1029/2008JB006006, 2009
Click
Here

for

Full
Article

1Department of Earth, Atmospheric, and Planetary Sciences, Massa-
chusetts Institute of Technology, Cambridge, Massachusetts, USA.

Copyright 2009 by the American Geophysical Union.
0148-0227/09/2008JB006006$09.00

B06102 1 of 21

http://dx.doi.org/10.1029/2008JB006006


SQUID microscopes: the finite dimensions of tangential
sensors mean that they typically require either higher
effective sensor-to-sample distances compared to vertical
sensors of the same size or else have smaller sizes, and
possibly inferior sensitivity, in order to maintain the same
distance [e.g., Ketchen et al., 1997]. Additional problems
arise from the fact that the sensors do not detect field
components at the same position, and their relative orienta-
tion can never be made perfectly orthogonal. Similar issues
take place when trying to obtain a vector field map by
successively scanning each component using a single-axis
sensor. In view of all these difficulties, it would be of great
advantage to use single-axis magnetometers to map only
one component of the field produced by a geological
sample, and yet be able to obtain full vector field maps.
[5] This is a reasonable proposition because, as men-

tioned earlier, the three components of the static magnetic
field external to a source are not independent of each other.
In geomagnetism, this relationship was first investigated in
the 1940s by Vestine and Davids [1945], and Hughes and
Pondrom [1947], who established that the vertical and
horizontal components of anomaly fields could be obtained
from total field maps by means of surface integrals. With
the advancement of computer technology and the develop-
ment of fast Fourier transform (FFT) algorithms, Lourenco
and Morrison [1973] proposed in the early 1970s a method
in the Fourier domain to transform a map of the total field
anomaly into maps of the three Cartesian components.
Later, a number of groups provided derivations of Fourier
relations among derivatives of both magnetic [Pedersen,
1989; Pedersen et al., 1990] and gravity [Hinojosa and
Mickus, 2002; Mickus and Hinojosa, 2001; Nelson, 1986,
1988] potential fields. The drawback of all of these Fourier
methods is that they require knowledge of the magnetic
field at all points on a surface and impose strong conditions
on magnetic field spatial distribution, such as assuming the
anomaly field is zero at the boundaries of the map. In
addition, singularities in the equations may lead to inaccu-
racies in the field maps obtained under particular conditions
[Purucker, 1990]. Hence, to overcome some of these issues,
different approaches were developed, mainly in the space
domain, such as convolution-based techniques [Bhattacharyya,
1977] and equivalent source techniques [Galliher and
Mayhew, 1982; Langel et al., 1982; Purucker, 1990].
[6] Because aeromagnetic surveys and analysis of satel-

lite magnetic data have often employed total field magneto-
meters, the aforementioned methods aimed primarily to
retrieve field component maps from total field maps. Rela-
tionships between magnetic field components in the Fourier
domain have also been described for specific source types
(either current distributions or magnetization distributions)
and source configurations (two-dimensional distributions)
[Egli and Heller, 2000; Volk et al., 2008]. The main
disadvantage of the latter approaches is that they strongly
depend on assumptions regarding the sources of magnetic
field. Consequently, the conditions for and the implications
of the interdependency of field components have not been
fully developed and exploited in the analysis of the mag-
netic properties of geological samples.
[7] In their original forms, all of the above techniques have

limited use for scanning magnetometry and magnetic mi-
croscopy, for which one would like to use single-component

field maps to compute the two remaining components and
total field map without any assumptions about the sources.
Here we describe an improved technique in the Fourier
domain similar to the method of Lourenco and Morrison
[1973]. We chose to develop this in Fourier domain for two
reasons. First, it is much faster and requires less computation
power than space domain techniques. Second, scanning
magnetometry, which involves the mapping of localized
samples in near-zero magnetic field environments, very
closely meets the assumption that the magnetic field is zero
at the boundaries of the mapping region (which is not
typically met in geomagnetic and crustal field mapping).
[8] We provide a step-by-step derivation of several rela-

tionships in the Fourier domain, directly from Maxwell’s
equations, which tie the three components of a static
magnetic field in a source-free region of the space. In
addition, we characterize the singularities in the equations
in the continuous domain and establish their effect on the
estimated field maps, which are independent of discretiza-
tion schemes. Our analysis incorporates the requirements
and peculiarities of scanning magnetometry, allowing us to
ascertain what sensor and mapping configurations are best
suited to obtain high-quality vector field maps in this
application. We present the mathematical foundation of
the technique, paying particular attention to important
practical aspects of its implementation that may directly
impact the quality of the estimated field maps. Specifically,
we show that the major source of error is related to the size
of the mapping area, and we derive formulas to quantify this
error. Several examples, both with synthetic and experimen-
tal data, demonstrate the performance of the technique under
different conditions. In particular, we show how the tech-
nique can be applied to magnetic field maps of geological
samples measured by a SQUID microscope. A MATLAB
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program (Software S1 and S2) illustrating the vector field
map calculation algorithm is available as auxiliary material.1

2. Foundations

[9] Our goal is now to investigate whether it is possible to
obtain all three components of the magnetic field from a
planar map of a single component. We consider the realistic
situation in which a magnetic sensor measures a single field
component on a plane above a sample. Since the magne-
tometer detects the magnetic field external to the source, we
seek to derive relationships between the three components
of the magnetic field in a source-free region. These relation-
ships should not depend on the source type or configuration.
[10] Without loss of generality, we begin by assuming

that all sources are located at or below the plane z = 0, so
that the half-space z > 0 is a source-free region. We also
assume that the magnetic field does not change with time
(magnetostatics) or that it varies sufficiently slowly such
that time derivatives can be neglected. In a source-free
region, the magnetic induction ~B is governed both by
Gauss’s law for magnetism

r �~B ¼ 0; ð1Þ

1Auxiliary material data sets are available at ftp://ftp.agu.org/apend/jb/
2008jb006006. Other auxiliary material files are in the HTML.
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and by the simplified Ampère’s circuital law

r�~B ¼~0: ð2Þ

[11] In Cartesian coordinates, (2) corresponds to the
following three equations

@Bz

@y
� @By

@z
¼ 0;

@Bz

@x
� @Bx

@z
¼ 0;

@Bx

@y
� @By

@x
¼ 0; ð3Þ

where z is the vertical (out of plane) coordinate and x and y
are the two in-plane coordinates. Since this set of partial
differential equations is valid in the domain �1 < x < +1
and �1 < y < +1, we can take the two-dimensional
Fourier transform [Zauderer, 1988], yielding

iky
� �

bz kx; ky; z
� �

�
@by kx; ky; z

� �
@z

¼ 0; ð4Þ

ikxð Þbz kx; ky; z
� �

�
@bx kx; ky; z

� �
@z

¼ 0; ð5Þ

iky
� �

bx kx; ky; z
� �

� ikxð Þby kx; ky; z
� �

¼ 0; ð6Þ

where i stands for the imaginary unit, kx and ky are the
horizontal wave numbers or spatial frequencies, and bx, by,
and bz denote the Fourier transforms of Bx, By, and Bz,
respectively. We explicitly show the dependence on space
and frequency variables for clarity, and we use the following
definition of the Fourier transform pair H(x, y, z), h(kx, ky, z):

h kx; ky; z
� �

¼
Zþ1

�1

Zþ1

�1

H x; y; zð Þe�i kxxþkyyð Þdx dy ; ð7Þ

H x; y; zð Þ ¼ 1

2pð Þ2
Zþ1

�1

Zþ1

�1

h kx; ky; z
� �

ei kxxþkyyð Þdkx dky: ð8Þ

[12] Notice that (6) ties the x and y components of the
magnetic field via their Fourier transforms, while (4) and (5)
show a more complex dependence between the transform of
the z component and the z derivative of the transforms of the
horizontal components. Specifically, (6) shows that by
mapping one of the horizontal field components we can
estimate the other component by means of simple algebraic
operations performed in the spatial frequency domain,
followed by an inverse transform operation. (Because some
information is likely to be lost in this process, we refer to
the output data of the processing as an estimated or
recovered magnetic field component map. We refer to the
field component map from which other components are
estimated as the primary field map.)
[13] Using the definition of the partial derivative, (4)

becomes

lim
dz!0

by kx; ky; zþ dz
� �

� by kx; ky; z
� �

dz
¼ iky

� �
bz kx; ky; z
� �

: ð9Þ

Since we are in a source-free region, we can make use of
upward continuation [Blakely, 1996] to further simplify (9):

lim
dz!0

by kx; ky; z
� �

e�
ffiffiffiffiffiffiffiffiffi
k2xþk2y

p
dz � by kx; ky; z

� �
dz

¼ iky
� �

bz kx; ky; z
� �

:

ð10Þ

Applying l’Hôpital’s rule to evaluate the limit, we obtain

�k by kx; ky; z
� �

¼ iky bz kx; ky; z
� �

; ð11Þ

where k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. Finally, rearranging (11) we get

by kx; ky; z
� �

¼ � iky=k
� �

bz kx; ky; z
� �

; ð12Þ

for k 6¼ 0. Similarly, we can derive

bx kx; ky; z
� �

¼ � ikx=kð Þbz kx; ky; z
� �

: ð13Þ

These last two equations demonstrate that knowledge of the
map of the vertical field component allows us to obtain both
of the horizontal components. Thus, the three equations (6),
(12), and (13) completely link the components of the
magnetic field, establishing the interdependence between
them.
[14] Another relationship between the three components

can be established by taking the two-dimensional Fourier
transform of (1)

ikxð Þbx kx; ky; z
� �

þ iky
� �

by kx; ky; z
� �

þ
@bz kx; ky; z

� �
@z

¼ 0: ð14Þ

Using the partial derivative definition and L’Hôpital’s rule,
and rearranging terms, we get

bz kx; ky; z
� �

¼ ikx=kð Þbx kx; ky; z
� �

þ iky=k
� �

by kx; ky; z
� �

: ð15Þ

This equation permits us to calculate the vertical field
component from the two horizontal field components. Note
that this equation is not independent from (6), (12), and
(13). For instance, the latter can be obtained by direct
substitution of (6) into (15).

3. Singularities

3.1. Nature of the Problem

[15] An inspection of equations (12), (13), and (15)
reveals that each break down for k = 0, for which there is
a singularity at the origin of the spatial frequency plane.
Consequently, any information associated with k = 0, such
as the uniform component (i.e., spatial DC offset) of field
maps, cannot be retrieved by these expressions. This
information loss is not surprising, because both (1) and
(2) are partial differential equations involving only first-
order derivatives. To better understand why the three
equations break down, we notice that there is a jump
discontinuity [Thomson et al., 2001] at the origin for the

functions kx

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
and ky

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
, which can be

easily verified by observing that they assume different
finite values depending on which direction the origin is
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approached. This means that the limit of these functions
at the origin does not exist. However, it is important to
realize that these functions are bounded and do not
diverge near the origin, since for any real variables u
and v the following relations hold

uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
����

���� ¼ uj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p ¼
ffiffiffiffiffi
u2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p ¼ 1;

provided u 6¼ 0 or v 6¼ 0: ð16Þ

Therefore, we can extend the functions so that they are
defined over the whole spatial frequency plane

g1 kx; ky
� �

¼ kx

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
; if kx 6¼ 0 or ky 6¼ 0

0; if kx ¼ ky ¼ 0;

8<
: ð17Þ

g2 kx; ky
� �

¼ ky

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
; if kx 6¼ 0 or ky 6¼ 0

0; if kx ¼ ky ¼ 0:

8<
: ð18Þ

Even though the choice of the value of the functions at the
origin is somewhat arbitrary in this case, a zero value seems
to be a logical option, as it is the midpoint of the jump
discontinuity and it yields a predictable null uniform
component for every field map, highlighting the loss of
information. In addition, because the functions g1 and g2
have unity extrema (as established in (16)), (12), (13) and
(15) do not amplify noise in the magnetic field data, which
is a very desirable feature when using real data and
numerical algorithms. If we think of g1 and g2 as spatial
filters acting on magnetic field maps, it is easy to realize that
noise is filtered out, since these functions act as low-pass
spatial filters. Thus, field component estimates obtained
through these equations will always be less noisy than the
primary field maps.
[16] Now let us turn our attention to equation (6), which

breaks down in a wider range of spatial frequencies: along a
line instead of at a single point. If we try to determine bx
from by, the equation breaks down for ky = 0, while the
problem manifests for kx = 0 when we attempt to retrieve by
from bx. A similar issue is observed when rearranging (12)
and (13) to retrieve bz from the transform of one of the
horizontal components. This means that any part of the field
component that does not depend on one of the spatial
frequency variables kx and ky (e.g., uniform in one direction)
may not be retrieved. Moreover, the functions

h1 kx; ky
� �

¼ kx=ky; for ky 6¼ 0 ð19Þ

h2 kx; ky
� �

¼ ky=kx; for kx 6¼ 0 ð20Þ

h3 kx; ky
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q .
kx; for kx 6¼ 0 ð21Þ

h4 kx; ky
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q .
ky; for ky 6¼ 0 ð22Þ

tend to infinity near the singularities (i.e., they are
unbounded), which indicates the occurrence of essential
discontinuities [Thomson et al., 2001]. Consequently, the
Fourier transforms of the field components cannot be
recovered in a band of frequencies around the singularities,
which may result in significant information loss. Notice,
however, that (15) provides a way around this problem in
the particular case of estimating the z component, the trade-
off being that knowledge of both x and y components is
required.
[17] We can also extend the above functions so that they

are defined over the whole spatial frequency plane. How-
ever, because they tend to infinity as the singularities are
approached, we need to use a different scheme. We utilize
the following extension

h0j kx; ky
� �

¼

hj kx; ky
� �

; if hj kx; ky
� ��� �� � g

g sgn hj kx; ky
� �� �

; if g < hj kx; ky
� ��� �� < 1

0; at the singularities of hj kx; ky
� �

;

8>>>><
>>>>:

ð23Þ

where 1 � j � 4, g is a threshold, and sgn stands for the

signum function sgn(z) =
z= zj j; if z 6¼ 0

0; if z ¼ 0



. This definition

limits the magnitude of the extended function to the value g
near the singularities, while preserving the phase or sign
information. Particularly, there is no information loss in the
region of the spatial frequency plane where jhj(kx, ky)j � g,
because hj

0(kx, ky)by,x(kx, ky, z) = hj(kx, ky)by,x(kx, ky, z) in this
region.
[18] In order to illustrate the connection between g and

noise levels, suppose the field map is corrupted by an
additive noise component N(x, y). The Fourier transform
of the estimate is then

b̂z;x;y kx; ky; z
� �

¼ h0j kx; ky
� �

by;x kx; ky
� �

þ h0j kx; ky
� �

n kx; ky
� �

; ð24Þ

where n and b are the transforms of the noise component
and noiseless field component, respectively. This demon-
strates that the noise is amplified at all spatial frequencies
where jhj0(kx, ky)j > 1, and the maximum magnification
factor is g. Considering that g also regulates the amount of
distortion introduced in the recovered field (it determines
the size of the region where h and h0 coincide), there is a
clear compromise: increasing g improves accuracy and
reduces information loss, while decreasing g tames noise
amplification. The amount of noise contamination in
experimental data is what usually dictates the threshold
level. Essentially, the parameter g should be as large as
possible, while avoiding excessive noise amplification.
Typical values range between 100 and 100,000.

3.2. Simple Examples: Infinite Wire and Dipole

[19] In order to better illustrate the effects of the different
type of singularities on the estimated field maps, we analyze
two simple cases: an infinite current-carrying wire and a
magnetic dipole. Because the expressions for the magnetic
field produced by these sources are well known, we can
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easily establish how the estimated field components differ
from the actual components.
3.2.1. Infinite Wire
[20] For a wire oriented in the y direction, the three

Cartesian components of the magnetic field are

Bx x; y; zð Þ ¼ m0I

2p
�z

x2 þ z2
; By x; y; zð Þ ¼ 0;

Bz x; y; zð Þ ¼ m0I

2p
x

x2 þ z2
; ð25Þ

where m0 is the permeability of free space and I is the
current flowing through the wire.
[21] The corresponding Fourier transforms are given by

bx kx; ky; z
� �

¼ � m0I=2ð Þe�z kxj j d ky
� �

; ð26Þ

by kx; ky; z
� �

¼ 0; ð27Þ

bz kx; ky; z
� �

¼ �i m0I=2ð Þ kx

kxj j e
�z kxj j d ky

� �
; if kx 6¼ 0

0; if kx ¼ 0;

8<
: ð28Þ

where the delta functions express mathematically the lack of
dependence of the field components on the y coordinate. (The
value of bz at kx = 0 is stated explicitly because otherwise the
expression would not be defined at these frequencies.)
[22] We begin by noticing that the integral of Bz over the

whole x-y plane is zero, because it exhibits odd symmetry.
In contrast, the integral of the Bx over the same region is
infinite, reflecting the fact that this component is always
negative (for a positive fixed value of z) and is uniform
along the y direction. These integrals correspond to the
value of the Fourier transforms (28) and (26), respectively,
at the origin of the spatial frequency plane.
[23] In order to illustrate the loss of the uniform part of

the maps, let us estimate bx from bz by means of (13) and
(28):

b̂x kx; ky; z
� �

¼ � m0I=2ð Þ kxj j
k

e�z kxj j d ky
� �

; if kx 6¼ 0

0; if kx ¼ 0;

(
ð29Þ

where the hat symbol denotes an estimate of a field
component or of its transform. This expression can be
further simplified by means of the following property of the
delta function

f uð Þd u� u0ð Þ ¼ f u0ð Þd u� u0ð Þ; ð30Þ

for a function f continuous at u0 [Bracewell, 1999].

[24] Hence, ðjkxj
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2x þ k2y

q
Þd(ky) = ðjkxj

. ffiffiffiffiffi
k2x

q
Þ �

d(ky) = (jkxj=jkxj)d(ky) = d(ky), for kx 6¼ 0, which com-
bined with (29) results in

b̂x kx; ky; z
� �

¼ � m0I=2ð Þe�z kxj j d ky
� �

; if kx 6¼ 0

0; if kx ¼ 0:



ð31Þ

Clearly, b̂x has a zero at the origin of the frequency plane,
meaning the estimated x component of the field, B̂x, has a
zero uniform part. This is in direct contrast to (26), whose
value at the origin of the frequency plane is infinite and is
associated with a uniform component.
[25] Now let us consider estimating bx and bz from by by

rearranging (6) and (12). In this case, it is trivial to see that
such estimates are of little use, as they are both null because
by(kx, ky, z) is zero everywhere. In other words, meaningful
estimates cannot be obtained since By does not vary in the y
direction. This is masked in this example, however, because
By is identically null. Hence, we turn to the field produced
by a magnetic dipole to further examine this issue.
3.2.2. Dipole
[26] The three Cartesian components of the magnetic

field generated by a magnetic dipole located at the origin
with moment m and pointing in the z direction are

Bx x; y; zð Þ ¼ m0m

4p
3xz

x2 þ y2 þ z2ð Þ5=2
;

By x; y; zð Þ ¼ m0m

4p
3yz

x2 þ y2 þ z2ð Þ5=2
;

Bz x; y; zð Þ ¼ m0m

4p
3z2

x2 þ y2 þ z2ð Þ5=2
� 1

x2 þ y2 þ z2ð Þ3=2

" #
:

ð32Þ

[27] The corresponding Fourier transforms are given by

bx kx; ky; z
� �

¼ �im0m kx=2ð Þe�zk ; ð33Þ

by kx; ky; z
� �

¼ �im0m ky=2
� �

e�zk ; ð34Þ

bz kx; ky; z
� �

¼ m0m k=2ð Þe�zk ; ð35Þ

where k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. We notice that none of the

components has a uniform part, as bx(0, 0, z) = by(0,
0, z) = bz(0, 0, z) = 0. Moreover, (1) Bz is axisymmetric
around the z axis (whence its Fourier transform depends
only on k), (2) bx is zero for kx = 0, and (3) by is zero for ky =
0. In the case of the magnetic dipole, it is straightforward to
see that owing to the lack of uniform parts in the magnetic
field components, the estimates b̂x and b̂y obtained by means
of (12) and (13) correspond exactly to the transforms bx and
by, respectively. That is, there is no information loss in this
situation.
[28] Let us now consider we wish to utilize (19)–(22) and

(23) to estimate Bx from By, and vice versa, or to estimate
the vertical component from either Bx or By. At first glance,
one would be tempted to set aside (23) and think that there
is no information loss, as there seems to be a ‘‘pole-zero
cancellation’’ (that is, a frequency variable in the numerator
canceling out a corresponding variable in the denominator).
There are a number of reasons why this approach is not
feasible in practice, including extremely large amplification
of noise (which is present in all experimental data), numer-
ical instability, and lack of a priori knowledge about
whether a cancellation exists for an unidentified field
source. These issues stem from essential discontinuities
present in (19)–(22), as opposed to the jump discontinuities
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observed in the expressions kx

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
and ky

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
.

Thus, it is necessary to employ (23) or a similar approach for
handlingmathematical singularities in the estimation process.
However, the analysis gets more difficult owing to the
introduction of nonlinear operations.
[29] The four remaining estimates are given by

b̂x kx; ky; z
� �

¼
�im0m kx=2ð Þe�zk ; if jkx=ky

�� � g

�im0m g ky=2
� �

e�zk sgn kx=ky
� �

; if g < kx=ky
�� �� < 1 ;

0; if ky ¼ 0 ð36Þ

8><
>:

b̂y kx; ky; z
� �

¼
�im0m ky=2

� �
e�zk ; if jky=kx

�� � g

�im0m g kx=2ð Þe�zk sgn ky=kx
� �

; if g < ky=kx
�� �� < 1 ;

0; if kx ¼ 0

8><
>:

b̂z kx; ky; z
� �
¼

m0m k=2ð Þe�zk ; if jk=kxj � g
m0m g kx=2ð Þe�zk sgn k=kxð Þ; if g < k=kxj j < 1 ;
0; if kx ¼ 0

8<
: ð38Þ

b̂z kx; ky; z
� �

¼
m0m k=2ð Þe�zk ; if jk=ky

�� � g

m0m g ky=2
� �

e�zk sgn k=ky
� �

; if g < k=ky
�� �� < 1

0; if ky ¼ 0:

8><
>:

ð39Þ

3.3. Implications

[30] We have just shown how severe information loss is
associated with essential discontinuities, while jump dis-
continuities only experience loss of information at k = 0.
This indicates that the best approach for minimizing infor-
mation loss consists in measuring the component perpen-
dicular to the measurement plane and then obtaining the two
remaining components via (12) and (13). It is superior in
this sense to using measurements of one of the horizontal
components to obtain the other horizontal component via
(6) and the vertical component by rearranging (12) or (13)
accordingly; measurements of both horizontal components
are required to avoid the essential discontinuities when
calculating the vertical component by means of (15). Owing
to its unambiguously superior performance, we will focus
on the vertical component mapping approach from this
point forward. Our SQUID microscope system [Fong et
al., 2005] fortuitously incorporates this sensor/mapping
configuration: the magnetic sensor is oriented along the z
(vertical) direction and the field is mapped on the horizontal
plane z = h, where h is the sample-to-sensor distance.
[31] An important point is that for most magnetic field

sources, we can actually retrieve the three components of
the magnetic field in practice without any significant
information loss using this scheme. The rapid falloff of

magnetic fields with distance from magnetic sources guar-
antees that the boundaries of mapping area can be extended
far enough to include regions where the total field is
essentially zero, thus eliminating the ambiguity regarding
the Fourier transform at k = 0. By forcing all components of
the recovered vector field to be zero within the appropriate
region, an accurate estimate of the transform at the origin of
the spatial frequency plane is automatically obtained. As
discussed below, extending the mapping area also improves
the performance of the technique, leading to smaller error in
the estimation process. Note that this procedure can be
easily carried out in the case of geological samples. This is a
fundamental difference between mapping of geological
samples and aeromagnetic or satellite surveys of anomaly
fields.

4. Experimental Constraints

[32] In the previous derivations, we assumed that the field
is known everywhere in a horizontal plane. Of course, such
condition cannot be met in practice, as it implies measuring
an infinite amount of data. Therefore, two approaches are
usually employed in real magnetic field mapping: restricting
the mapping area and discretizing the field map (sampling
on a grid). We next describe the effects of these limitations
on the technique and how they can be minimized.

4.1. Finite Mapping Area

[33] The effects of restricting the mapping area may be
analyzed by modeling the measured field as the true
magnetic field in the mapping plane multiplied by a
rectangular window, c, representing the mapping area:

~Bl x; y; zð Þ ¼ Bl x; y; zð Þc x; yð Þ; ð40Þ

where l s tands for x , y, o r z , and c(x , y ) =

i
1; inside mapping area

0; otherwise:



[34] In the spatial frequency domain, (40) becomes a

convolution

~bl kx; ky; z
� �

¼ 1=4p2
� �

bl kx; ky; z
� �

� X kx; ky
� �

¼ 1=4p2
� � Zþ1

�1

Zþ1

�1

bl x; hð ÞX kx � x; ky � h
� �

dxdh;

ð41Þ

where * denotes a two-dimensional convolution operation.
Now let us analyze what effects the mapping area poses on
the estimated x component of the magnetic field in (13). We
begin by making use of the following identity

Bz x; y; zð Þ ¼ c x; yð Þ þ 1� c x; yð Þð Þ½ �Bz x; y; zð Þ
¼ c x; yð Þ þ c x; yð Þ½ �Bz x; y; zð Þ; ð42Þ

where c(x, y) = 1 � c(x, y) is the complement of c, that is,
c is one everywhere but within the mapping area, where it
is zero. Thus,

~Bz x; y; zð Þ ¼ c x; yð ÞBz x; y; zð Þ ¼ Bz x; y; zð Þ � c x; yð ÞBz x; y; zð Þ:
ð43Þ

ð37Þ
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Taking the Fourier transform of (43) and substituting it in
(13) yields

~̂bx kx; ky; z
� �

¼ � ikx=kð Þ~bz kx; ky; z
� �

¼ � ikx=kð Þ
h
bz kx; ky; z
� �

� 4p2
� ��1

X kx; ky
� �

� bz kx; ky; z
� �i

¼ � ikx=kð Þbz kx; ky; z
� �

þ ikx=kð Þ

�
h
4p2
� ��1

X kx; ky
� �

� bz kx; ky; z
� �i

:

ð44Þ

In the space domain, we have

~̂Bx x; y; zð Þ ¼ B̂x x; y; zð Þ þF�1
ikx=kf g � c x; yð ÞBz x; y; zð Þ½ �

¼ B̂x x; y; zð Þ þ �x= x2 þ y2
� �3=2h i

�
�
c x; yð ÞBz x; y; zð Þ

�
;

ð45Þ

where F�1 {�} denotes the two-dimensional inverse Fourier
transform of the expression within braces. Therefore, the
estimated field for a restricted mapping area is equal to the
estimated field for an infinite mapping area plus an error
term. The error term is given by

Ex ¼ �x= x2 þ y2
� �3=2h i

*
�
c x; yð ÞBz x; y; zð Þ

�
: ð46Þ

For the typical case of rectangular and symmetrical mapping
area, c and c are given by

c x; yð Þ ¼ 1; if xj j � Lx=2 and yj j � Ly=2
0; if xj j > Lx=2 or yj j > Ly=2



; ð47Þ

c x; yð Þ ¼ 1; if xj j > Lx=2 or yj j > Ly=2
0; if xj j � Lx=2 and yj j � Ly=2



; ð48Þ

where Lx and Ly are the dimensions of the mapping area.
Hence, (46) becomes

Ex ¼ �
Z �Ly=2

�1

Z þ1

�1

x� x0

x� x0ð Þ2þ y� y0ð Þ2
� �3=2

Bz x
0; y0; zð Þ dx0dy0

�
Z þ1

Ly=2

Z þ1

�1

x� x0

x� x0ð Þ2þ y� y0ð Þ2
� �3=2

Bz x
0; y0; zð Þ dx0dy0

�
Z þLy=2

�Ly=2

Z �Lx=2

�1

x� x0

x� x0ð Þ2þ y� y0ð Þ2
� �3=2

Bz x
0; y0; zð Þ dx0dy0

�
Z þLy=2

�Ly=2

Z þ1

þLx=2

x� x0

x� x0ð Þ2þ y� y0ð Þ2
� �3=2

Bz x
0; y0; zð Þ dx0dy0:

ð49Þ

Figure 1. Results of the technique for a synthetic 1.0 � 10�6 Am2 magnetic dipole oriented in the y
direction. (a) Simulated x component field map calculated on a 128 � 128 horizontal square grid at 1 mm
above the sample, corresponding to a 7.5 � 7.5 mm2 mapping area. (b) Estimated x component field map
obtained from the map of the z component (Figure 3a). (c) Error in the estimated field map calculated as
the difference between the maps shown in Figures 1a and 1b. (d) Error in the estimated map predicted by
means of (49).
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[35] Evaluation of (49) typically requires careful use of
numerical integration algorithms, as the function �x/(x2 +
y2)3/2 is unbounded and is also not defined at the origin.
When dealing with finite-length sources, large mapping
areas decrease the error, as expected, because Bz is smaller
at the edges of the enlarged map.
[36] Following the same approach, error terms can be

derived for the estimates of the y and z components in (12)
and (15):

Ey ¼ �y

�
x2 þ y2
� �3=2� �

*
�
c x; yð ÞBz x; y; zð Þ

�
; ð50Þ

Ez ¼ x

�
x2 þ y2
� �3=2� �

*
�
c x; yð ÞBx x; y; zð Þ

�
þ y

�
x2 þ y2
� �3=2� �

*
�
c x; yð ÞBy x; y; zð Þ

�
: ð51Þ

4.2. Discretized Map

[37] For discretized fieldmaps, proper sampling is required
to avoid information loss as well as errors in the processing
of the maps. In particular, the condition established by the

Nyquist-Shannon sampling theorem [Oppenheim et al.,
1996] should be satisfied

Dx ¼ Dy ¼ D � p=kmax; ð52Þ

where kmax is the maximal spatial frequency of the field
component that is measured. Because most magnetic fields
are not strictly band limited, some criterion should be used
to define a maximum spatial frequency. We refer the reader
to [Lima et al., 2006] for an example of such criterion to
estimate kmax. Because these estimates may be hard to
obtain for some complex sources, one should sample the
field as fine as possible, since it is always feasible to
downsample a map by discarding samples in an over-
sampled map. However, it is usually not possible to recover
information lost by undersampling. A simple—though not
infallible—way of testing whether the measurement spacing
is adequate consists of computing the two-dimensional FFT
of the measured map and checking whether the magnitude
of the spectrum is close to zero at the highest spatial
frequencies. If this happens, the map is not likely to be
undersampled. In case the spectrum is nearly zero all the
way down to a frequency much smaller than half the
sampling rate, which is the maximum frequency observed in
a digital spectrum, downsampling may be used to decrease
map size. For instance, by discarding every other sample in
the x and y directions, the map is downsampled in each

Figure 2. Results of the technique for a synthetic 1.0 � 10�6 Am2 magnetic dipole oriented in the y
direction. (a) Simulated y component field map calculated on a 128 � 128 horizontal square grid at 1 mm
above the sample, corresponding to a 7.5 � 7.5 mm2 mapping area. (b) Estimated y component field map
obtained from the map of the z component (Figure 3a). (c) Error in the estimated field map calculated as
the difference between the maps shown in Figures 2a and 2b. (d) Error in the estimated map predicted by
means of (50).

B06102 LIMA AND WEISS: OBTAINING VECTOR MAGNETIC FIELD MAPS

8 of 21

B06102



direction by a factor of 2, which corresponds to an effective
step size twice the size of the original one. However, in
order to avoid aliasing, it is imperative to ensure, in this
particular case, that no information is present past a quarter
of the original sampling rate, or p/2D.
[38] A discussion of some aspects of implementing the

technique on computers is presented in Appendix B. We
have utilized the software MATLAB

1

to implement and test
our technique. Typically, we obtain accurate estimates of
field maps with more than 65,000 points in just two seconds
on a 3.4 GHz Dual-Core PC with 3.0-GB RAM running
Windows XP in 32-bit mode.

5. Applications

5.1. Synthetic Data

[39] To test our technique and characterize its perfor-
mance, we began by examining two different synthetic
magnetic sources whose full vector fields we know a priori.
The first was a single magnetic point dipole oriented in the y
direction (Figures 1–5), and the second was an extended
magnetization distribution composed of strips in the shape
of the Massachusetts Institute of Technology’s logo that are
uniformly magnetized in the ±z directions (Figure 6). In
Figures 1–10, the orientation of the coordinate axes follows
the one adopted in Figure 1. We utilized the normalized

root-mean-square deviation (NRMSD) to quantify the dis-
crepancies between actual and estimated maps:

NRMSD ¼

Zþ1

�1

Zþ1

�1

�� f̂ x; y; zð Þ � f x; y; zð Þ
��2dxdy

Zþ1

�1

Zþ1

�1

��f x; y; zð Þ
��2dxdy

2
66666664

3
77777775

1=2

; ð53Þ

where f̂ represents an estimated field map, and f stands for
the actual field map.
[40] Figures 1a, 2a, and 3a show the x, y, and z components,

respectively, of the magnetic field of a 1.0 � 10�6 Am2

magnetic dipole oriented in the y direction measured on a
128 � 128 horizontal square grid (7.5 � 7.5 mm2) at a
distance of 1 mm above the sample. The recovered map of
the x component, obtained from the map of the z component
(Figure 3a) by means of (13) and (17), is presented in
Figure 1b. Figure 1c shows the error in the estimate, that is,
the difference between the two field maps shown in
Figures 1a and 1b. We notice that the error is quite small
(maximum error of �1.3% of the peak field value,
NRMSD = 7.66 � 10�3), and it is larger near the edges
of the map. To investigate the source of this small discrep-
ancy between the original field map and the estimated map,

Figure 3. Results of the technique for a synthetic 1.0 � 10�6 Am2 magnetic dipole oriented in the y
direction. (a) Simulated z component field map calculated on a 128 � 128 horizontal square grid at 1 mm
above the sample, corresponding to a 7.5 � 7.5 mm2 mapping area. (b) Estimated z component field map
obtained from the maps of both x (Figure 1a) and y (Figure 2a) components. (c) Error in the estimated
field map calculated as the difference between the maps shown in Figures 3a and 3b. (d) Error in the
estimated map predicted by means of (51).
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we computed the error distribution due to a restricted
mapping area, as given by (49). The predicted error distri-
bution is presented in Figure 1d. We can see that the
agreement between the actual and predicted errors is excel-
lent. This indicates that the actual numerical error of the
estimation technique is quite small compared to the error
associated with reduced mapping areas.
[41] Figure 2a shows the y component of the field

produced by the same magnetic dipole, and the recovered
field using (12) and (18) is presented in Figure 2b. The error
in the recovered component and the predicted error are
shown in Figures 2c and 2d, respectively. The maximum
error was again �1.3% of the peak field value, while the
NRMSD was 1.17 � 10�2.
[42] Next, we estimated the z component of the field

based on the x (Figure 1a) and y (Figure 2a) component
maps, by means of (15), (17), and (18). Figure 3a shows the
z component of the field produced by the same magnetic
dipole as before, while Figure 3b shows the estimated z
component map. Figures 3c and 3d show the recovery error
and the predicted error, respectively. Once again, a very
good agreement between theoretical and recovered field
components was obtained. The maximum error was �5.1%
of the peak field (NRMSD = 5.49 � 10�2) and it was
concentrated near the edges of the map. This larger error is
not surprising, considering that the map of the x component

(Figure 1a), which is used in the calculations, is somewhat
extended. Because the field is larger at the boundaries of the
mapping area, the recovery error increases accordingly, as
given by (51).
[43] In order to verify that the recovery error indeed

decreases substantially as the mapping area is enlarged,
we doubled the dimensions of the mapping region while
keeping the same discretization (step size). Figure 4a shows
a map of the x component of the field of the same dipole
used previously, calculated on a 256 � 256 horizontal
square grid (15 � 15 mm2) located 1 mm above the sample.
The map of the recovered x component is presented in
Figure 4b, while the recovery error and the predicted error
are shown in Figures 4c and 4d, respectively. The maximum
error was 0.094% of the peak field value (NRMSD = 1.05 �
10�3), located at the edges of the map. Similar error level
reductions were obtained for the recovered y and z compo-
nents (recovered maps not shown): 0.091% (NRMSD =
1.62 � 10�3) and 0.73% (NRMSD = 1.51 � 10�2),
respectively. Again, the error in the recovered z component
was several times greater than the error in the estimated x
and y components.
[44] We then proceeded to investigate the effects of

sensor noise on the recovered maps. As mentioned before,
noise levels in estimated field components are expected to
be smaller than in primary field maps used in the estimation

Figure 4. Results of the technique for a synthetic 1.0 � 10�6 Am2 magnetic dipole oriented in the y
direction. (a) Simulated x component field map calculated on an extended 256 � 256 horizontal square
grid at 1 mm above the sample, corresponding to a 15 � 15 mm2 mapping area. (b) Estimated x
component field map obtained from an extended map of the z component (not shown). (c) Error in the
estimated field map calculated as the difference between the maps shown in Figures 4a and 4b. (d) Error
in the estimated map predicted by means of (49).
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process owing to the low-pass filtering effect intrinsic to the
technique. Notice that this does not necessarily imply a
better signal-to-noise ratio (SNR), as differences in ampli-
tude of one field component relative to another may, in fact,
reduce the overall SNR of a recovered component even if
the noise level is decreased by the processing. Because
sensor noise is usually not correlated with the field source,
such reduction in SNR may also occur in actual mappings

of components using magnetometers. We adopted the fol-
lowing definition of SNR:

SNR ¼ 10 log10

Z þ1

�1

Z þ1

�1

��s x; yð Þ
��2dxdyZ þ1

�1

Z þ1

�1

��h x; yð Þ
��2dxdy dB; ð54Þ

Figure 5. Effects of noise on estimated field maps for a synthetic 1.0 � 10�6 Am2 magnetic dipole
oriented in the y direction. (a) Noiseless x component field map calculated on a 128 � 128 horizontal
square grid at 1 mm above the sample, corresponding to a 7.5 � 7.5 mm2 mapping area. (b) Estimated x
component field map obtained from the z component map corrupted by a large amount of additive noise
(shown in Figure 5d). (c) Noiseless x component field map corrupted by the same amount of additive
noise as the z component shown in Figure 5d, corresponding to equivalent levels of simulated sensor
noise. Note that the estimated x component shown in Figure 5b is actually less noisy than this field map
with simulated sensor noise. (d) Noisy z component field map obtained by adding white noise (shown in
Figure 5f) to the noiseless z component map shown in Figure 5a to simulate sensor noise, resulting in a
signal-to-noise ratio of 16.8 dB. (e) Effective noise present in the estimated x component map shown in
Figure 5b. (f) White noise component simulating sensor noise.
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where s denotes the (noiseless) signal, or field component in
this case, and h stands for the noise spatial distribution. It is
essentially the ratio between the energy of the signal and the
energy of the noise, expressed in decibels.
[45] We used the same magnetic dipole as that in

Figures 1–3 to test the noise performance of the technique.
High noise levels were introduced to highlight the effects of
noise contamination, as well as to demonstrate that the
technique is robust and performs well under adverse con-
ditions. We added Gaussian white noise (shown in Figure 5f)

to the z component of the field (see Figure 3a), resulting in a
SNR of 16.8 dB. This corresponds to a ratio of �48
between the energy of the field map and the energy of the
noise spatial distribution or, in this particular case, to peak
field �11 times larger than the peak noise. This noisy
primary field map is shown in Figure 5d, while the noiseless
synthetic x component of the field is shown in Figure 5a.
Figure 5b shows the estimated x component field map
obtained from the noisy z component; the resulting estimate
has a SNR of 14.0 dB. For comparison, Figure 5c displays

Figure 6
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the noiseless x component corrupted with the same amount
of additive noise as the primary field shown in Figure 5d,
simulating a measured x component map contaminated by
sensor noise. Such a field map has a SNR of only 10.8 dB,
which is 3.2 dB (� a factor of 2) worse than the SNR of the
recovered field map. A closer look reveals that the estimated
x component is indeed less noisy than what would be
measured by a magnetometer. Since the noiseless map is
known in this case, we can separate the noise in the recovered
field (shown in Figure 5e), which includes the error associ-
ated with reduced mapping areas. By comparing Figures 5e
and 5f, one can see that 5e is a low-pass filtered version of 5f.
In fact, the standard deviation of the noise in Figure 5e is 1.45
mT, whereas the standard deviation of the noise in Figure 5f is
2.06 mT.
[46] The second synthetic field source tested was more

complex: uniformly magnetized flat slabs in the shape of the
Massachusetts Institute of Technology (MIT) logo, as
shown in Figure 6a. All slabs are magnetized in the +z
direction (out of the plane), except for the main part of the
‘‘I’’ letter, which is magnetized in the �z direction (into the
plane). The magnetization intensity is 800 � 10�6 A/m for
all slabs. Synthetic field maps of the x, y, and z components,
shown in Figures 6b, 6e, and 6h, respectively, were calcu-
lated on a 128 � 128 grid (2.6 � 2.6 mm2) at a distance of
100 mm from the sample. The x and y component recovered
field maps, obtained from the map of the z component, are
shown in Figures 6c and 6f, respectively, while the
corresponding recovery errors are shown in Figures 6d
and 6g. The maximum errors were 2.02% and 1.41% of
the peak field values, respectively (corresponding NRMSDs
were 1.24 � 10�2 and 1.11 � 10�2). Figure 6i shows the
recovered z component magnetic field map, obtained from
the synthetic maps of the x and y components, while the
associated recovery error is shown in Figure 6j. The
maximum error was 1.64% of the peak field value, and
the NRMSD was 5.66 � 10�2. Once again, the recovered
fields exhibited excellent agreement with the theoretical
calculations.

5.2. Experimental Data

[47] We used four different samples and two magnetic
sensors to test and demonstrate our technique applied to real
magnetic field maps. Our first sample consisted of a flexible
magnet commonly found at hardware stores that was cut
across into small strips and glued onto a plastic board so as
to form the shape of the MIT logo (Figure 7a). Each strip

exhibits an alternating pole magnetization pattern, resem-
bling a ‘‘caterpillar.’’ We mapped the three components of
the magnetic field using a Hall-effect magnetometer (Mag-
netic Instrumentation, Inc., Model 2100 Gaussmeter)
equipped with both axial (for measuring the z component)
and transverse (for measuring both x and y components)
probes. All measurements were performed outside of a
shielded room under adverse noise conditions owing to
the proximity of the magnetic sensor to computers and
various lab equipment. A custom-built x-y scanning stage
with high-precision piezoceramic motors and submicron
accuracy, which is part of our SQUID microscope system,
was used to move the sample underneath the Hall probe. A
custom LabVIEW program controlled the x-y stage as well
as a digital acquisition board, producing the z, x, and y
component field maps shown in Figures 7b, 7e, and 7g,
respectively. Because different probes had to be used to map
all three components of the field, and since the transverse
probe had to be rotated by 90� in order to measure the
second horizontal field component, we could not ensure a
constant sensor-to-sample distance and an accurate align-
ment of the three maps. In particular, because the Hall
elements are not situated at the same distance from the tip of
the probes, a noticeable decrease in spatial resolution was
observed in our measurements of the x and y components
(Figures 7e and 7g, respectively) when compared to the map
of the z component (Figure 7b). This is an example of the
difficulties encountered with vector mapping systems de-
scribed in section 1.
[48] After mapping the three components, we used our

technique to estimate the x and y component maps from the z
component map only. The estimated Bx is shown in
Figure 7c, while the estimated By is shown in Figure 7d.
Notice that these estimated maps correspond to the same
sensor-to-sample distance as the z component map
(Figure 7b). Direct comparison of Figures 7c and 7e and
of Figures 7d and 7g demonstrates that the recovered
horizontal component maps have much higher spatial res-
olution than the measured maps. In order to properly
compare the estimated and measured maps to check the
accuracy of our calculations, we used upward continuation
[Blakely, 1996] to bring the estimated maps to the same
sensor-to-sample distances corresponding to the real maps
of the x and y components. The estimated x component
map upward continued by 2.1 mm is shown in Figure 7f,
while the estimated y component map upward continued by
2.3 mm is presented in Figure 7h. (These distances are

Figure 6. Results of the technique for a synthetic magnetization distribution in the shape of the Massachusetts Institute of
Technology (MIT) logo. (a) Magnetization distribution composed of rectangular strips uniformly magnetized in the ±z
direction. Red indicates magnetization oriented in the +z direction (out of the plane), while gray represents magnetization
oriented in the �z direction (into the plane). All strips have magnetization intensities of 800 mA/m. (b) Simulated x
component field map calculated on a 128 � 128 horizontal grid (2.6 � 2.6 mm2) at a distance of 100 mm from the sample.
(c) Estimated x component field map obtained from the map of the z component shown in Figure 6h. (d) Error in the
estimated field map calculated as the difference between the maps shown in Figures 6b and 6c. (e) Simulated y component
field map calculated on a 128 � 128 horizontal grid (2.6 � 2.6 mm2) at a distance of 100 mm from the sample. (f) Estimated
y component field map obtained from the map of the z component shown in Figure 6h. (g) Error in the estimated field map
calculated as the difference between the maps shown in Figures 6e and 6f. (h) Simulated z component field map calculated
on a 128 � 128 horizontal grid (2.6 � 2.6 mm2) at a distance of 100 mm from the sample. (i) Estimated z component field
map obtained from the maps of both x and y components shown in Figures 6b and 6e, respectively. (j) Error in the estimated
field map calculated as the difference between the maps shown in Figures 6h and 6i.
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Figure 7. Experimental results of the technique for a test sample composed of strips of flexible magnet
arranged in the shape of the MIT logo. (a) Photograph of the test sample. (b) Map of the z component of the
magnetic field of the sample measured by a Hall-effect magnetometer at an effective sensor-to-sample
distance of�2 mm. (c) Estimated x component field map obtained from the map of the z component shown
in Figure 7a. (d) Estimated y component field map obtained from the map of the z component shown in
Figure 7a. (e) Map of the x component measured by a Hall-effect magnetometer at an effective distance of
�4.1mm from the sample. (f) Estimated x component field map (Figure 7c) upward continued by 2.1mm to
match the experimental sensor-to-sample distance. (g) Map of the y component measured by a Hall-effect
magnetometer at an effective distance of �4.3 mm from the sample. (h) Estimated y component field map
(Figure 7d) upward continued by 2.3 mm to match the experimental sensor-to-sample distance. Notice the
excellent agreement between Figures 7e and 7f and Figures 7g and 7h.
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consistent with the differences in probe design, as well as
with the uncertainty associated with repositioning the probe
over the sample after a rotation.) Comparisons of Figures 7e
and 7f, and of Figures 7g and 7h show excellent agreement
between measured and estimated components of the
magnetic field, with only minor differences. Owing to the
uncertainties in probe repositioning, it was not possible in
this case to obtain an assessment of the recovery error by
means of subtracting the estimated map from the actual field
map. Imprecision in the alignment of the two maps creates
artifacts that dominate the error spatial distribution. This, in
fact, highlights another advantage of the technique,
especially when obtaining estimates based on a single

component: the estimated maps have the same origin,
orientation and sample-to-sensor distance as the original
map, which is something that cannot be achieved in real
maps since two sensors cannot occupy the same place in
space (or, in the case of subsequent measurements, cannot
be brought to the exact same position relative to the
sample). In certain applications, such as inverse problems,
these registration issues can be critical.
[49] Next, we applied our technique to magnetic maps of

three geological samples. Our focus is to demonstrate the
applicability and performance of the technique, whereas it is
beyond the scope of this paper to conduct detailed paleo-
magnetic analyses on these samples. Instead, we illustrate

Figure 8. Experimental results of the technique for a 100-mm thin section of a microfolded Archean
hematite-bearing banded iron formation from the Jack Hills, Western Australia. (a) Reflected light
photograph of the sample. (b) Total field map calculated from Figures 8c–8e. (c) Map of the z component
of the natural remanent field of the sample measured by our SQUID microscope at a sensor-to-sample
distance of �450 mm. (d) Estimated x component field map obtained from the map of the z component
shown in Figure 8c. (e) Estimated y component field map obtained from the map of the z component
shown in Figure 8c. Color scales in Figures 7c–7e were saturated to emphasize small features.
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the potential of vector maps, and indicate how these data
may be eventually incorporated into the analysis of geolog-
ical samples.
[50] We used our SQUID microscope system, which is

housed in a three-layer mu metal can situated inside a two-
layer mu metal shielded room with active compensation
coils, to map the z component of the remanent magnetic
field from a 100-mm thin section of a microfolded Archean
hematite-bearing banded iron formation from the Jack Hills,
Western Australia [Spaggiari et al., 2007]. Figure 8a shows
a reflected light photograph of the thin section, where the
microfold can be easily observed. Figure 8c shows the map
of the z component of the natural remanent field mea-

sured by the SQUID microscope at a sensor-to-sample
distance of approximately 450 mm. On the basis of this
map, we calculated the x and y component maps shown in
Figures 8d and 8e, respectively. We have saturated the color
scale in all the individual component maps so as to
emphasize small features present in the underlying magne-
tization distribution. Figure 8b shows the total field map
computed from 8c, 8d, and 8e. Comparison of Figures 8a
and 8b allows us to associate field strength with features
present in the sample, which potentially indicates which
minerals carry most magnetization. This kind of information
can greatly constrain the magnetic inverse problem, as
source elements can be eliminated from regions of low field

Figure 9. Experimental results of the technique for a 100-mm thin section of an Archean hematitic
quartz-pebble conglomerate from the Jack Hills, Western Australia. (a) Reflected light photograph of the
sample. (b) Total field map calculated from Figures 9c–9e. (c) Map of the z component of the natural
remanent field of the sample measured by our SQUID microscope at sensor-to-sample distance of
�215 mm. (d) Estimated x component field map obtained from the map of the z component shown in
Figure 9c. (e) Estimated y component field map obtained from the map of the z component shown in
Figure 9c. Color scales in Figures 9b–9e were saturated to emphasize small, weak features.
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Figure 10. Experimental results of the technique for a 30-mm thin section of a microfolded magnetite-
and hematite-bearing limestone from the Neoproterozoic Svanbergfjellet Formation, Svalbard.
(a) Reflected light photograph of the sample. (b) Total field map calculated from Figures 10c–10e.
(c) Map of the z component of the natural remanent field of the sample measured by our SQUID
microscope at sensor-to-sample distance of �215 mm. (d) Estimated x component field map obtained
from the map of the z component shown in Figure 10c. (e) Estimated y component field map obtained
from the map of the z component shown in Figure 10c. Color scales in Figures 10b–10e were saturated to
emphasize small, weak features.
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strength. This not only reduces the size of the inverse
problem, but actually improves the quality of the solution
by requiring recovered magnetization distributions that
closely match the sample’s geometric and magnetic charac-
teristics. Qualitative analysis of the individual component
maps may also bring out interesting information regarding
general aspects of the magnetization. For instance, a first
step to carry out a fold test on this sample would consist of

rejecting the hypothesis of unidirectional magnetization. In
fact, our preliminary inversions using the three-component
maps (not shown) assuming a unidirectional magnetization
distribution model failed to adequately explain the magnetic
field around the microfold.
[51] We then mapped the z component of the natural

remanent magnetic field of a 100-mm thin section of an
Archean hematitic quartz-pebble conglomerate from the

Figure A1
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Jack Hills, Western Australia [Spaggiari et al., 2007] with
our SQUID microscope at a sensor-to-sample distance of
215 mm (Figure 9c). Figure 9a shows the reflected light
photograph of the sample, while Figures 9d and 9e show the
estimated maps of the x and y components, respectively. The
total field map is shown in Figure 9b. The color scales in
Figures 9b–9e were saturated to enhance weaker sources. A
comparison between the total field map and reflected light
photograph shows about a dozen spots mainly associated
with hematite staining that generate strong fields. Analysis
of the individual component maps reveal that these ‘‘hot
spots’’ clearly exhibit a dipolar behavior and are magnetized
in different directions. We also notice a multitude of small
weaker features of dipolar nature with scattered magnetiza-
tion directions.
[52] Finally, we scanned a 30-mm thin section of a

microfolded magnetite- and hematite-bearing limestone
from the Neoproterozoic Svanbergfjellet Formation, Sval-
bard [Maloof et al., 2006] with our SQUID microscope
again at a sensor-to-sample distance of 215 mm. Figure 10a
shows the reflected light photograph of the sample, and
Figure 10c shows the z component field recorded by the
microscope. On the basis of this map, the x (Figure 10d) and
y (Figure 10e) component maps were estimated. The total
field map shown in Figure 10b was computed from the three
individual component maps. In this case, the total field map
shows only a few spots with field strength above the
average, and we clearly notice two regions of distinct field
strengths: the pink oxide-rich region at bottom, which has
stronger field strengths, and the light-colored remainder of
the sample which is associated with slightly weaker fields.

6. Conclusions

[53] We summarize below the main features of our
technique:
[54] 1. We have developed an improved technique in the

Fourier domain that retrieves planar vector field maps from
a single-component map of the magnetic field external to a
geological sample. No assumptions are made regarding the
sources of magnetic field other than (1) the existence of a
half-space devoid of sources where the field is measured
and the estimates are calculated and (2) time derivatives of
the magnetic field fields can be neglected. This technique is

adapted to the requirements and peculiarities of scanning
magnetometry.
[55] 2. Assumptions and constraints imposed on magnetic

field distributions that, in many situations, precluded the use
of similar techniques in the Fourier domain formulated for
geomagnetic anomaly data can be easily satisfied in scan-
ning magnetometry.
[56] 3. By properly characterizing the singularities in the

method’s equations and their associated discontinuities, we
established what the best sensor and mapping configura-
tions are.
[57] 4. Measuring the magnetic field component normal

to the scanning plane and subsequently recovering the field
components parallel to this plane yields the best results.
This is the optimal scanning magnetometer configuration
for obtaining vector field maps.
[58] 5. The technique is fast and robust, and there is no

amplification of noise. On the contrary, we showed the
estimated components have less noise than the primary
single-component map.
[59] 6. The major source of error is associated with the

dimensions of the mapping area. An excessively reduced
mapping area results in cropped field maps and increased
error in the estimated components. We provided formulas to
quantify this error. The numerical error of the technique is
negligible.
[60] 7. It is possible to obtain vector field maps with

virtually no information loss by choosing suitable mapping
areas that include regions sufficiently away from the sample
where the total field is known to be effectively zero. Using
synthetic data, we demonstrated that estimated maps with
error levels below 0.1% of the peak field can be easily
obtained with realistic mapping area dimensions.
[61] 8. Three-component measurements made with a

commercial Hall sensor magnetometer confirmed the excel-
lent agreement between estimated and actual field compo-
nent maps using experimental data obtained in a noisy
environment.
[62] 9. Maps of the vertical component of the natural

remanent field of three geological samples measured with
our SQUID microscope were used to calculate vector field
maps. We illustrated how total field maps can be used to
correlate field strength with petrographic textures in the
sample, and that this information can be used to distribute
source elements of an inverse problem model. We also

Figure A1. Comparison of magnetization retrieval from modeled magnetic microscopy data using both single-component
(only Bz) and three-component data (using Bz, By, and Bx). Model field data (nT) of (a) Bz, (b) By, and (c) Bx. (d) Positions
of each of 400 dipoles arranged in a 20 � 20 grid used to model field data (marked with crosses). Synthetic data (nT) of
(e) Bz

0, (f) By
0, and (g) Bx

0 retrieved from least squares fits to Bz only (i.e., using Figure A1a). (h) Bz residuals from least
squares fits to Bz only (i.e., data in Figure A1a minus data in Figure A1e). Synthetic data (nT) of (i) Bz

0, (j) By
0, and (k) Bx

0

retrieved from least squares fits using Bz, By, and Bx simultaneously (i.e., using Figures A1a–A1c). (l) Bz residuals from
least squares fits to Bz, By, and Bx (i.e., data in Figure A1a minus data in Figure A1i). (m) True magnetization (Am2)
oriented out of the page: three dipoles each with moment Mz = 1 � 10�8 Am2 and My = Mx = 0 (not shown). The magnetic
fields of these sources are the model data in Figures A1a–A1c. Magnetization solution (Am2) retrieved using Bz only (i.e.,
using Figure A1a): (n) Mz

0, (o) My
0, and (p) Mx

0. This solution was used to forward model data in Figures A1e–A1g.
Magnetization solution (Am2) retrieved using Bz, By, and Bx (i.e., using Figures A1a–A1c) for (q) Mz

0, (r) My
0, and (s) Mx

0.
This solution was used to forward model data in Figures A1i–A1k. Note that intensity scales for Bz residuals in Figures A1h
and A1l differ from one another by 8 orders of magnitude and are both orders of magnitude lower than synthetic data
(Figures A1e and A1i). Note also that intensity scales for My

0 and Mx
0 in Figures A1r and A1s are more than 4 orders of

magnitude smaller than Figures A1o and A1p. As shown at lower left, z = out of the page, y = bottom to top, x = left to
right.
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showed that visual inspection of the three component
maps may reveal general attributes of the magnetization
distribution.
[63] 10. Because the quality of the estimated maps is

excellent, our technique shows that it is often more advan-
tageous to have a single-axis magnetometer with high
spatial resolution than a vector magnetometer with moderate
spatial resolution, particularly in magnetic scanning micros-
copy. Specifically, our example using a Hall sensor magne-
tometer shows that the estimated horizontal component
maps exhibit much better spatial resolution than the
corresponding measured maps.

Appendix A: Advantages of Vector Data
for Studying Remanent Magnetization:
A Simple Example

[64] We demonstrate the advantages of three-component
data over single-component data for magnetic microscopy
imaging of remanent magnetization with a simple example.
Our goal is determine the magnetization pattern of three
upwardly oriented magnetic dipoles (Figure A1m) from
synthetic field measurements as might be obtained with a
typical SQUID microscope (Figures A1a–A1c). The
dipoles are situated in a plane at 0.1 mm below a model
SQUID microscope sensor which measures their fields in a
planar grid of 400 locations with spacing of 0.1 mm
(Figure A1d). In the following discussion, we refer to these
field maps as the ‘‘model data’’ (B) and the magnetization
that generated them as the ‘‘true magnetization’’ (Mz). Using
an equivalent source scheme solved using the conjugate
gradient analysis routine LSQR [Paige and Saunders,
1982], we fit for the three components of the magnetization
solution (Mz

0, My
0, Mx

0) which best reproduces the model
data (Figures A1e–A1l). Each dipole was allowed to
independently vary in direction and magnitude. For these
calculations, we retained the full (untruncated and non-
sparse) Jacobian and the LSQR iterations were terminated
when the solution approached a stable value and before any
signs of overfitting (e.g., growth in solution norm with little
improvement in residuals). We conducted this inversion in
two ways: using only the z component model data, Bz (i.e.,
Figure A1a) and then again using all three field components
Bz,By, and Bx (i.e., Figures A1a–A1c). Finally, we calculated
the magnetic field produced by each of these solutions (we
refer to these fields as ‘‘synthetic data,’’ B0) (Figures A1e–
A1g, A1i–A1k). For the three-component fits, the number of
unknown parameters P = 1200 (400 dipoles� 3 components
each) is equal to the number of data points N (field
measured at 400 locations � 3 components), whereas the
single-component fits have P = 1200 and N = 400, and are
severely underdetermined.
[65] We found that both synthetic data sets Bz

0 are in
excellent agreement with the model. The single-component
fit has Bz residuals that are orders of magnitude lower than
the three-component fit because it is optimized to matching
this field component (whereas the three-component fits
minimize the residuals for all three components). However,
the superior fitting by the single-component method has a
cost: it leads to a magnetization solution (Figures A1n–
A1p) which is far more inaccurate than that of the three-
component fits (Figures A1q–A1s) and which poorly

reproduces By and Bx (compare Figures A1f and A1g
and Figures A1j and Figures A1k to Figures A1b and
Figures A1c). This difference in fitting is not due to a
nonoptimal choice of the number of conjugate gradient
iterations used to obtain the final solutions: we found that
the high-frequency structure visible in Figures A1n–A1p
sets in at small iteration numbers and that there is no optimal
iteration number which can regularize these solutions. This
simple example shows how even in a case where numerical
noise is the sole noise source, knowledge of all three
components of the magnetic field can provide more accurate
constraints on magnetization sources compared to that of
just a single field component.

Appendix B: Practical Implementation

[66] Although numerical implementation of our technique
on computers is straightforward, some aspects require
particular attention so as to avoid inaccuracies in the
calculations. The most important issue is ensuring that
expressions such as (17) and (18) are sampled precisely in
the same way as the DFT/FFT algorithm samples the
spectrum of the field maps. In this way, we guarantee that
proper weights are applied at each spatial frequency when
performing multiplications between the spectra of the field
components and the filter functions in (12), (13), and (15).
This is a crucial step to achieve low error levels in the
estimates. Because the discrete time Fourier transform is a
periodic function, the sampling scheme in the frequency
domain may vary depending on the implementation of the
DFT/FFT algorithm used. A nonnegligible imaginary com-
ponent resulting from an inverse Fourier transform opera-
tion, for instance, is a strong indication that something was
not done correctly in the calculations.
[67] Another point that may contribute to errors in the

estimated component maps is coarse sampling of the
spectrum by the DFT/FFT algorithm. We strongly suggest
the use of zero-padding techniques [Marple, 1987] to tackle
this problem, especially when the number of points in the
map is small. Clearly, sampling the spectrum too finely
leads to very large matrices, which should also be avoided
owing to long computation times and high memory require-
ments. Thus, a practical approach consists of doubling the
number of points in each dimension by means of zero
padding and checking whether the new estimates display
any noticeable changes. If they do, we repeat the procedure
by quadrupling the number of points, and so on, until no
significant differences are observed or until the matrices get
too large.
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