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[1] Scanning magnetic microscopes are being increasingly utilized in paleomagnetic
studies of geological samples. These instruments typically map a single component of the
sample’s magnetic field at close proximity with submillimeter horizontal spatial resolution.
However, in most applications, an image of the magnetization distribution within the sample
is desired rather than its external magnetic field. This requires carefully solving an ill-posed
inverse problem to obtain solutions that are nearly free of artifacts and consistent with both
natural and laboratory magnetization processes. We present a new, fast inversion technique
based on classic methods developed for the Fourier domain that retrieves planar
unidirectional magnetization distributions from magnetic field maps. Whereas our approach
considers the subtle peculiarities of scanning magnetic microscopy which otherwise can
complicate this technique, much of the formalism and algorithms described in this work can
also be directly applied to province-scale magnetic field data from aeromagnetic surveys
and may be used as an initial step in the modeling of magnetic sources with complex
three-dimensional geometries. We discuss sources of inaccuracy observed in practical
implementations of the technique and present strategies to improve the quality of inversions.
Numerous examples of inversion of both synthetic and experimental data demonstrate the
performance of the technique under different conditions. In particular, we retrieve
magnetization distributions of a Hawaiian basalt and compare it to inversions calculated in a
previous work. We conclude by showing a reconstructed magnetization for the eucrite
meteorite ALHA81001 that displays in high resolution the spatial distribution of
high-coercivity grains within the sample.
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1. Introduction

[2] Techniques for imaging magnetization distributions
in geological samples have received considerable attention
in recent years owing to the wealth of information they
may provide regarding the strength, direction, and location
of magnetic sources within a sample at fine spatial scales.
Such techniques are particularly powerful when used in
tandem with conventional bulk moment magnetometry,
as they yield complementary information that is key to

understanding fine-scale magnetization carried by rocks.
Of particular interest are techniques that operate on a scale
ranging from several micrometers to several hundred
micrometers, for which a sufficiently large number of grains
is averaged (assuming single domain magnetite, a common
rock-forming mineral) and meaningful paleomagnetic data
can still be obtained while providing high-resolution
characterization of the magnetic sources.
[3] Magnetization imaging techniques in this category

typically measure one component of the magnetic field at
very close proximity on a plane above the geological
sample. They must rely on solving a nonunique inverse
problem to retrieve the magnetization distribution that gives
rise to the measured field data. The nonuniqueness arises
because there are an infinite number of solutions that
produce the same observed magnetic field [Baratchart
et al., 2013]. However, incorporating as much information
as possible regarding the specificities of the sample under
analysis and particularities of the experimental setup can
in many cases narrow the space of solutions and help select
physically meaningful magnetization distributions. In fact,
we show in Baratchart et al. [2013] that, under specific
conditions (e.g., unidirectional magnetization), it is even
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possible to ensure uniqueness for the inverse problem in
scanning magnetic microscopy (SMM) given that, in this
application, there are no sources outside a well-defined
region in space.
[4] For the aforementioned spatial scales, the predominant

imaging technique is scanning magnetic microscopy, in
which a geological sample—typically a thin section—is
displaced horizontally underneath a fixed magnetic sensor
by a high-precision scanning stage while the magnetic field
is recorded [Weiss et al., 2007a]. This is effectively equiva-
lent to mapping the field on a plane above a fixed sample,
with the advantage that the magnetic sensor experiences a
constant background field that is easily subtracted from the
measurements. SMM techniques have advanced significantly
in the past few years owing to the availability of low-cost high-
performance miniature magnetic sensors based on technologies
such as giant magnetoresistance, giant magnetoimpedance,
magnetic tunnel junction, and Hall effect, among others [e.g.,
Hankard et al., 2009; Kletetschka et al., 2013; Uehara and
Nakamura, 2007; Volk et al., 2008]. The field sensitivities of
these sensors are orders of magnitude lower than those of
superconducting quantum interference devices (SQUIDs),
but this disadvantage can be partly offset by the ability to
bring such sensors to less than a few tens of micrometers
from the sample’s surface (a factor of ~3–10 closer than
the typical measuring height of SQUIDs) where the fields
are stronger and better resolved.
[5] In this paper, we focus on an inversion technique

tailored for SMM that can be readily applied to similar
imaging techniques, such as magneto-optical imaging, with
just a few minor modifications. In addition, scanning mag-
netic microscopy can be considered as an aeromagnetic survey
performed at microscales over source distributions with no to-
pography. However, there are some important key distinc-
tions between SMM and aeromagnetic surveys: (i) the
source distribution in SMM can often be accurately modeled
as a planar two-dimensional layer; (ii) strictly speaking,
SMM measures the field produced directly by the sample’s
remanent magnetization instead of variations in a back-
ground field (magnetic anomalies); (iii) sensor positioning
is very accurate in SMM, and the vertical component of
the magnetic field is typically measured in place of the total
field or the vector field; (iv) no correction algorithm is required
to bring all measurements to the same surface or to grid the
data; and (v) both the horizontal and the vertical extents of
the magnetization distribution of magnetic sources are finite
and known in advance. In spite of these differences, much of
the mathematical framework associated with the inverse
problem is very similar, and readers may easily apply some
of the results and discussion presented in this work to the
inversion of aeromagnetic data.
[6] Our technique is best suited for samples that carry

unidirectional or unidimensional (i.e., antipodal) magneti-
zation distributions. Unidirectional magnetizations are
naturally present in many rocks at the spatial scales involved
in SMM,wheremost samples do not exceed 2.5 cm in diameter.
For igneous rocks, it is unusual to encounter individual
magmatic cooling units with such small spatial scales; most
likely, the whole sample will be magnetized in a single
direction. For sedimentary rocks, very slow deposition rates
(<~10 cm/million years) are required for the recording of
magnetic reversals across a couple of centimeters. In that

case, samples may occasionally contain unidimensional
magnetization distributions [e.g., ferromanganese crusts
Oda et al., 2011]. For metamorphic rocks, they would most
likely be either unidirectional or multidirectional, depending
on what spatial range the processes the rock was subjected
to take place. In addition to such natural occurrences,
paleomagnetic studies routinely require that artificial
unidirectional magnetizations be imparted to samples in a
controlled way, so as to assess magnetic properties of the
rock and its capability to record ancient magnetic fields.
[7] As is customary in the field of inverse problems, no

single inversion technique is universally applicable or
exhibits superior performance in all applications. In the case
of scanning magnetic microscopy, different assumptions re-
garding properties of the magnetization distribution as well
as the mathematical method chosen to perform the inversion
make each technique suitable to tackle a specific subset of
problems. Ultimately, the application at hand will determine
which inversion technique is best suited to undertake the
inversion. Here, we present an inversion technique in the
Fourier domain to retrieve thin planar unidirectional magne-
tization distributions from magnetic field maps that incorpo-
rates specificities of SMM.
[8] Techniques in the Fourier domain for inverting

magnetic data have been extensively utilized since the late
1960s—particularly following the development of the fast
Fourier transform (FFT) algorithm [Cooley and Tukey,
1965]—owing to significant gains provided in algorithm
speed and less stringent memory requirements compared
to spatial-domain techniques. However, this comes at a
price: incorporating additional constraints—for example,
nonnegativity and sample shape (“support”)—is very hard
or even infeasible in some cases. Furthermore, Fourier
techniques require that the magnetic field be measured over
larger areas. Pioneering applications included inversion of
satellite data (using Fourier series) [Mayhew, 1979],
magnetic anomaly data from irregular layers [Parker,
1973; Parker and Huestis, 1974], and marine magnetic
anomalies from planar layers [Bott, 1967; Schouten and
McCamy, 1972]. Whereas such techniques for inverting
geomagnetic data have continued to be developed and
improved in the past decades, the vast majority are not
directly applicable to scanning magnetic microscopy owing
to assumptions regarding properties of the source distribu-
tion (e.g., infinite layers with irregular topography are not
suitable models for thin sections). An exception is the tech-
nique described in Mareschal [1985] for the inversion of
potential field data that was later adapted specifically for
scanning magnetic microscopy [Egli and Heller, 2000].
Although the latter work has yielded the first inversions of
scanning SQUID microscopy maps of geological samples, ex-
perimental measurements were highly contaminated with posi-
tion noise owing to precision issues in the scanning stage used.
This ultimately impacted the data processing and the choice
of regularization method, leading to a larger degree of regu-
larization required to stabilize the inverse computations.
[9] A parallel path for the development of inversion

techniques in the Fourier domain has been the reconstruction
of planar electrical current distributions in conducting media
from magnetic field measurements, with applications in
biomagnetism and nondestructive testing [Dallas, 1985;
Kullmann and Dallas, 1987; Roth et al., 1989]. Although

LIMA ET AL.: FAST INVERSION OF PLANAR MAGNETIZATION

2724



in this case the goal is to invert the Biot-Savart law, much of
the mathematical formalism is somewhat similar to the case
of imaging remanent magnetization. In fact, one of those tech-
niques was adapted for reconstructing two-dimensional mag-
netization and susceptibility distributions [Tan et al.,
1996]. Hybrid techniques have also been developed to take
advantage of useful features in both spatial and Fourier
domains. One example is the Subtractive Optimally
Localized Averages, which was initially developed for
inversion of helioseismic data and has been recently adapted
to scanning magnetic microscopy [Usui et al., 2012]. In this
technique, certain calculations are performed in the Fourier
domain to improve speed while avoiding handling idiosyn-
crasies of Fourier transforms.
[10] We built our technique upon the pioneering works of

Egli and Heller [2000], Roth et al. [1989], and Tan et al.
[1996]. We achieved speeds up to several orders of magnitude
faster than spatial-domain inversion algorithms [e.g., Weiss
et al., 2007a further optimized for superior performance],
obtaining solutions for magnetization models with more
than 15,000 source elements in just a few seconds. Like
similar techniques in the Fourier domain, our inversion
algorithm allows for a finer model discretization, thereby
frequently yielding reliable higher-resolution estimates of
magnetization distributions. To attain superior performance,
we utilized additional two-dimensional signal processing
methods to regularize the inverse problem, tame noise
amplification, and improve nonnegativity. Because of its
speed and accuracy, our technique is particularly powerful
when multiple inversions of the same field map must
be calculated so as to find the magnetization direction
(if unknown) or to optimize regularization.
[11] Many of the Fourier techniques for the inversion

of magnetic data previously described in the literature
often lacked systematic strategies to identify and minimize

the various sources of inversion degradation, which is
especially critical when inverting nonideal data associated
with geological samples measured with real magnetic
sensors. In this work, we present a quantitative study
showing the spatial distribution of error in the recovery
and making use of an error metric to evaluate the overall
mismatch when inverting synthetic data. In particular, we
used synthetic test sources containing jump discontinuities,
for which reconstructions are especially challenging in the
Fourier domain owing to the Gibbs phenomenon. This
allowed us not only to thoroughly characterize the inaccuracies
in the solution under worst case conditions but also to assess
the effectiveness of strategies to decrease recovery error. In
addition, unlike some previous techniques, our method is
optimized to yield solutions that are not excessively
smoothed (excessive regularization) and to lack artifacts and
high-frequency components of no physical significance.
Furthermore, we characterize the class of magnetically
silent sources (annihilators) that affects uniqueness in this
particular type of inverse problem.
[12] Obtaining reliable solutions to ill-posed inverse

problems typically requires a detailed understanding of all
the factors that might affect the accuracy of the solution.
Unfortunately, there does not seem to exist a simple recipe
that would always lead to good results, except in very few
particular cases. Here, we attempt to (i) present in an
accessible form the basic theory of inversions in the
Fourier domain of magnetic data from unidirectional
magnetizations, as well as the main factors that impact
inversion quality (section 2 and Appendices A and B),
and (ii) progressively validate the results, starting with
simulated and synthetic samples, where much information
is known beforehand and can be independently verified,
and closing with examples of actual geological samples
(section 3).

y

Z = h

Sample
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ϕ
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r

Figure 1. Measurement configuration assumed for the modeling. The magnetic field produced by a planar
sample (hatched surface) with magnetization

!
M and located on the horizontal plane z= 0 is measured on

the plane z= h parallel to the sample. The convention adopted for spherical coordinates is also indicated.
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2. Theory

2.1. The Inverse Problem for Scanning
Magnetic Microscopy

[13] The external magnetic field
!
B at position

!
r generated

by an arbitrary two-dimensional magnetization distribution!
M (moment per unit area) of finite size is given by

where S is the magnetization surface, m0 is the permeability
of free space, and !r 0 denotes the coordinates of a
magnetization element.
[14] This is a realistic model for SMM, in which doubly

polished 30 mm thin sections of geological samples are
typically measured at distances greater than three times the
sample thickness [Fong et al., 2005; Weiss et al., 2007a].
We assume that the magnetic field is measured on the
plane z = h parallel to a sample located on the x-y
horizontal plane, where h is the sensor-to-sample distance
or liftoff (Figure 1). By incorporating the integration

limits into
!
M ¼ Mx;My;Mz

� �
, we can express equation

(1) as two-dimensional convolutions of magnetization
components with Green’s functions that describe the source-
measurement configuration. After expanding equation (1)
in Cartesian coordinates and extending the integration limits

to infinity, the three components of
!
B are:

Bx ¼ Gxx � Gð Þ �Mx þ Gxy �My þ Gxz �Mz; (2)

By ¼ Gyx �Mx þ Gyy � G
� � �My þ Gyz �Mz; (3)

Bz ¼ Gzx �Mx þ Gzy �My þ Gzz � Gð Þ �Mz; (4)

where * denotes a two-dimensional convolution operation
between two functions U and V

U x; yð Þ*V x; yð Þ ¼
Z þ1

�1

Z þ1

�1
U �; xð ÞV x� �; y� xð Þd�dx;

and where the Green’s functions are given by

Gxx ¼ m0
4p

3x2

x2 þ y2 þ h2
� �5=2; Gxy ¼ Gyx ¼ m0

4p
3xy

x2 þ y2 þ h2
� �5=2;

Gyy ¼ m0
4p

3y2

x2 þ y2 þ h2
� �5=2; Gxz ¼ Gzx ¼ m0

4p
3xh

x2 þ y2 þ h2
� �5=2 ;

Gzz ¼ m0
4p

3h2

x2 þ y2 þ h2
� �5=2; Gyz ¼ Gzy ¼ m0

4p
3yh

x2 þ y2 þ h2
� �5=2 ;

G ¼ m0
4p

1

x2 þ y2 þ h2
� �3=2:

(5)

[15] Notice that the nine double-indexed Green’s functions
are associated with the first term within curly braces in equation
(1), while the Green’s function G stems from the second term.

(Aswas done in equations (2)–(5), wewill often denote the field

measured on the plane z=h by
!
B x; yð Þ or just !B instead of

!
B

x; y; hð Þ, so as to simplify the notation. Similarly, the Green’s
functions and magnetization distributions will often be de-
noted by their abbreviated form. This double-indexed nota-
tion indicates the influence of a specific magnetization
component on a particular magnetic field component and

should not be confused with the notation commonly used
in mathematics to denote partial derivatives.)
[16] To estimate the magnetization distribution from mag-

netic field measurements, we need to invert (i.e., deconvolve)

equations (2)–(4) for
!
M . It is often beneficial to perform this

operation in the Fourier domain, where convolutions are
transformed into products. Taking the two-dimensional
Fourier transform of equations (2)–(4) yields

bx ¼ gxx � gð Þmx þ gxymy þ gxzmz; (6)

by ¼ gxymx þ gyy � g
� �

my þ gyzmz; (7)

bz ¼ gxzmx þ gyzmy þ gzz � gð Þmz; (8)

where

gxx � g ¼ � m0=2ð Þk
2
x

k
e�hk ; if k 6¼ 0

0 ; if k ¼ 0

8<: ; (9)

gxy ¼
� m0=2ð Þkxky

k
e�hk ; if k 6¼ 0

0 ; if k ¼ 0

(
; (10)

gyy � g ¼ � m0=2ð Þk
2
y

k
e�hk ; if k 6¼ 0

0 ; if k ¼ 0

8<: ; (11)

gxz ¼ � m0=2ð Þikx e�hk; (12)

gzz � g ¼ m0=2ð Þke�hk; (13)

gyz ¼ � m0=2ð Þiky e�hk; (14)

i is the imaginary unit, k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
is the radial spatial

frequency (wave number), and kx and ky are the spatial
frequencies in the x and y directions, respectively.
[17] Here, we have used the following definition of the

Fourier transform pair H(x,y), h(kx,ky):

h kx;ky
� � ¼ Zþ1

�1

Zþ1

�1
H x; yð Þe�i kxxþkyyð Þdxdy; (15)

H x; yð Þ ¼ 1

2pð Þ2
Zþ1

�1

Zþ1

�1
h kx;ky
� �

ei kxxþkyyð Þdkx dk y: (16)

[18] We may also denote the Fourier transform of a function
H by ℱ {H} and the inverse transform by ℱ� 1{h}.

!
B

!
r

� �
¼ m0=4pð Þ

ZZ
S

3
!
M !r 0� �� !r �!r 0� �

!r �!r 0j j5
!r �!r 0ð Þ �

!
M !r 0ð Þ
!r �!r 0j j3

( )
d!r 0 ; (1)
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[19] Notice that equations (6)–(8) express algebraic
relationships between functions of kx and ky rather than
between numbers. Furthermore, for each point (kx,ky) in the
spatial frequency plane, there is an associated 3� 3 system
of linear equations

or
��
G
�
m ¼

�
b. Substituting equations (9)–(14), we get

��
G kx;ky
� � ¼ �m0

2
e�hk ikx; iky;�k

� �T �ikx=k;�iky=k; 1
� �

¼
�m0

2
e�hk

k2x=k kxky=k ikx

kxky=k k2y=k iky

ikx iky �k

26664
37775 ; if k 6¼ 0

0
��

; if k ¼ 0:

8>>>>>>><>>>>>>>:
(18)

[20] It is easy to verify that the symmetric matrix
�
G
�is singular (i.e., not invertible) with rank 1 for every

(kx,ky) 6¼ (0,0). This suggests that, in general, arbitrary
two-dimensional magnetization distributions cannot be
uniquely recovered from magnetic field maps, even if
all three components of the field are known everywhere on a
plane. (In some cases, sophisticated spectral/spatial unmixing
techniques can be employed to tackle nonuniqueness when
attempting to invert multidirectional magnetization
distributions [Baratchart et al., 2013], but such an approach
is outside of the scope of this paper.) In addition, it shows that,
for low or moderate noise levels, a single field component
carries all the information about the magnetization distribution
[Lima and Weiss, 2009]. For k=0,

��
g is the zero matrix, which

implies that the uniform (constant) component of the magneti-
zation distribution cannot be directly recovered frommagnetic
field measurements. This is not surprising, since uniform pla-
nar magnetizations with support in the entire plane constitute a
classic example of magnetically silent source or annihilator
[Baratchart et al., 2013; Parker, 1977], generating no external
magnetic field. Thus, a constant magnetization can always be
added to the solution without changing the field produced by
the overall distribution. We will show later that this will not
be a serious issue, provided we restrict our sources to finite-
size distributions (which, of course, is always what is
encountered in practical applications of SMM) and we map
the magnetic field over a plane with horizontal dimensions
larger than the sample’s horizontal dimensions.
[21] The fact that

��
g is rank 1 prompts the question of

whether a magnetization distribution with a single free

parameter can be uniquely recovered—except for its uniform
part—from measurements of a single magnetic field
component. The most interesting practical case consists of
a unidirectional magnetization distribution with known
fixed direction but variable strength [Baratchart et al.,

2013; Weiss et al., 2007a]. Retrieving such a magnetization
from scanning magnetic microscopy data measured on a
plane above the sample is the goal of this paper.
[22] Before proceeding, we remark that although the phys-

ical magnetization distributions considered here have finite
dimensions (i.e., compact support), any inversion model
implemented in the Fourier domain implicitly assumes that
magnetizations may have infinite (unbounded) support.
This is of special significance because we show in a
companion article that there is no silent source with compact
support that is also unidirectional [Baratchart et al., 2013].
We will show later how compact support constraints can
be indirectly incorporated into the inversion.

2.2. Unidirectional Model

[23] If we assume the direction of the magnetization

distribution is everywhere the same,
!
M may be expressed as

!
M x; yð Þ ¼ M x; yð Þ n̂; (19)

where n̂ ¼ sin yð Þ cos ’ð Þ x̂ þ sin yð Þ sin ’ð Þ ŷ þ cos yð Þ ẑ is a
fixed unit vector representing the direction of themagnetization,
and y and ’ are the conventional zenith and azimuth angles in
spherical coordinates (i.e., y=0 represents the+z direction,
whereas y =p/2,’ =0 represents the +x direction—see
Figure 1). IfM is nonnegative for all (x, y), then!M is called uni-
directional. More generally, without any restrictions of
sign, we say that a magnetization

!
M of the form (19) is uni-

dimensional. While the focus of this paper is on
unidirectional magnetizations because they naturally arise
in geoscience applications, the techniques described herein
apply as well in the unidimensional case.
[24] Substituting equation (19) in equations (2)–(4), we get

Bx ¼ Gxx � Gð Þ � M siny cos’ð Þ þ Gxy � M sin y sin’ð Þ
þ Gxz � M cos yð Þ; (20)

By ¼ Gyx � M sin y cos’ð Þ þ Gyy � G
� � � M sin y sin’ð Þ

þ Gyz � M cos yð Þ; (21)

Bz ¼ Gzx � M sin y cos’ð Þ þ Gzy � M sin y sin’ð Þ
þ Gzz � Gð Þ � M cosyð Þ: (22)

gxx � gð Þðkx;kyÞ gxy kx;ky
� �

gxz kx; ky
� �

gxy kx;ky
� �

gyy � g
� �

ðkx; kyÞ gyz kx; ky
� �

gxz kx;ky
� �

gyz kx;ky
� �

gzz � gð Þðkx; kyÞ

26664
37775
�
mx kx;ky
� �

my kx;ky
� �

mz kx; ky
� �

�
¼

�
bx kx; ky
� �

by kx; ky
� �

bz kx;ky
� �

�
; (17)
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[25] In the Fourier domain, the above equations become,
after substituting equations (9)–(14):

bx kx; ky
� � ¼ � m0

2
e�hk

�
k2x
k

	 

siny cos’þ kxky

k

� �
sin y sin’

þ ikxð Þ cosy
�
m kx;ky
� �

;

(23)

by kx; ky
� � ¼ � m0

2
e�hk

�
kxky
k

� �
siny cos’þ k2y

k

 !
siny sin’

þ iky
� �

cosy

�
m kx; ky
� �

;

(24)

bz kx; ky
� � ¼ � m0

2
e�hk

�
ikxð Þ siny cos’þ iky

� �
siny sin’

� kð Þ cosy
�
m kx;ky
� �

:

(25)

[26] Notice that equations (23) and (24) are only defined
for k 6¼ 0, whereas the following trivial relationships hold
for k= 0:

bx 0; 0ð Þ ¼ 0; by 0; 0ð Þ ¼ 0; bz 0; 0ð Þ ¼ 0 ; (26)

which express the fact that the mean values of each field
component (and, consequently, of the vector field) are zero.
[27] Inversion of equations (23)–(25) form is only possible

at spatial frequencies where the terms within square brackets
are not equal to zero. Let us begin by analyzing bx. In this
case, the conditions for inversion breakdown (in addition to
k= 0) are:

kx kx siny cos’þ ky siny sin’þ ikð Þ cosy� � ¼ 0: (27)

[28] We notice that equation (23) breaks down whenever
just kx= 0, independently of the values y and ’might assume
(i.e., for any arbitrary magnetization direction). To determine
the remaining breakdown conditions—which are associated
with the term within square brackets in equation (27)—it
is convenient to define rotated spatial frequency variables
ku and kv as follows

ku ¼ cos’ð Þkx þ sin’ð Þky
kv ¼ � sin’ð Þkx þ cos’ð Þky
k0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2u þ k2v
p ¼ k;

8><>: (28)

which are rotated by the azimuth angle’with respect to the pair
kx,ky. This embeds in the rotated variables the dependence on

’, simplifying the equations. Substituting equation (28) into
equation (27), and performing some manipulations, we get

iku siny ¼ k0 cosy: (29)

[29] Now, the only way an imaginary number can equal a
real number is if both numbers are zero. Thus, we have to
solve two simultaneous equations

ku siny ¼ 0

k0 cosy ¼ 0:



(30)

[30] The solutions are

k
0 ¼ 0 for arbitrary yð Þ; (31)

and

ku ¼ 0 and y ¼ p=2 : (32)

[31] The breakdown condition expressed by equation (31)
was already obtained above (i.e., k=0). Equation (32), on
the other hand, shows that for any magnetization direction that
is purely horizontal, equation (23) breaks down along the
line (cos’)kx + (sin’)ky = 0 (which is perpendicular to the
magnetization direction) in the frequency plane. The conditions
for by are similar, but equation (24) breaks down for ky=0,
instead of kx=0. As for bz, equation (25) breaks down only at
k= 0 and, for y =p/2, at (cos’)kx+ (sin’)ky=0. Table 1 sum-
marizes the conditions associated with each field component.
[32] The fact that inversion of the z field component breaks

down in a narrower range is very significant, as it opens the
possibility for obtaining high-quality magnetization estimates
from z component magnetic field maps, particularly for
distributions that are not magnetized in the sample plane
(horizontal). Therefore, we will henceforth focus on
estimating magnetization distributions from maps of the z
component of the magnetic field.
[33] It should be noticed that all the conditions shown in

Table 1 are intrinsic to the magnetic inverse problem and can-
not be avoided nomatter which component (or combination of
the three components) of the field is used. These conditions do
not mean that an inverse solution cannot be obtained, but
rather that there are information losses associated with them.
This means that something will be missing in the solution
when these conditions are met. For k= 0, it means all
solutions to this inverse problemmay possibly be off by a con-
stant factor which is associated with the uniform planar mag-
netization silent source. As detailed in Appendix B, this will
not be a serious impediment for scanning magnetic mi-
croscopy data, since the constant factor may be obtained
by carrying out a few additional calculations so as to ensure the
solution has compact support. Regarding the condition y =p/2;
(cos’)kx+ (sin’)ky=0, it implies that purely in-plane
magnetizations cannot be faithfully recovered—without
imposing further constraints—even after correcting for the
constant factor. Specifically, the estimated magnetization will
lack accurate information at spatial frequencies along the line
(cos’)kx+ (sin’)ky=0. This is usually manifested in the solu-
tion as undulations perpendicular to the magnetization direction
n̂. Such information losses may be partially mitigated by regu-
larization techniques, although sometimes this improvement
comes at the expense of reduced spatial resolution.

Table 1. Conditions for Breakdown of Inversions of Unidirectional
Planar Magnetizations

Component
Condition

#1
Condition

#2 Condition #3

bx kx= ky= 0 kx= 0 y ¼ p=2; cos’ð Þkx þ sin’ð Þky ¼ 0
by kx= ky= 0 ky= 0 y ¼ p=2; cos’ð Þkx þ sin’ð Þky ¼ 0
bz kx= ky= 0 N/A y ¼ p=2; cos’ð Þkx þ sin’ð Þky ¼ 0
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[34] Another way of interpreting this condition is realizing
that in-plane unidirectional magnetizations whose intensities
do not vary along the magnetization direction n̂ are also silent
sources. In fact, one can use equation (1) to demonstrate that
any in-plane magnetization of the form

!
M x; yð Þ ¼ M vð Þ d̂—

where d̂ ¼ cos’ð Þx̂ þ sin’ð Þŷ , u and v are coordinates in
a rotated coordinate system defined by u = x cos’+ y sin’,
v =� x sin’ + y cos’, and M does not depend on u—gives
rise to an integrand with odd symmetry, and, consequently,
no external magnetic field is produced.
[35] Notice that each condition for breakdown of equations

(23)–(25) in fact corresponds to a silent source for the vector

field
!
B or for one of its horizontal components. In particular,

whereas each silent source for the z component of
!
B (i.e.,

conditions 1 and 3 in Table 1) is also a silent source
for the x and y components, the converse is not true for
this specific inverse problem (i.e., conditions 2 for Bx

and By do not make Bz = 0). That is to say, a null z com-
ponent of the field over the whole measurement plane

implies
!
B ¼ !

0, but a null x- or y- component map does not.
For this reason, the field component perpendicular to the
sample plane is the most advantageous of the three
components for inversion in this source-sensor configuration.
A very important result is that the conditions listed in
Table 1 for the unidirectional case all correspond to silent
sources with infinite support, as they are constant along one di-
rection at least. In fact, the inverse problem for unidirectional
magnetization distributions with compact support is unique
irrespective of the magnetization direction [Baratchart et al.,
2013].
[36] To illustrate these points, we show in Fig. S1 (in

supporting information) two examples of magnetization
distributions that produce a nonzero magnetic field with a
single silent horizontal field component. In the first case,
the synthetic distribution consisted of three infinitely long
strips parallel to the x axis, each uniformly magnetized in
a different direction. The z and y components are nonzero,

whereas the x component is silent. Because conditions 2
for Bx and By do not depend on the magnetization direction,
each strip yields Bx = 0 everywhere. In the second case, the
synthetic distribution consisted of three infinitely long strips
parallel to the y axis, each uniformly magnetized in a different
direction and yielding By=0 everywhere. Here, the z and x
components are nonzero, whereas the y component is silent.

2.3. Inversion

[37] In view of the existence of silent sources with infinite
(unbounded) support, the inversion of equation (25) calls
for a careful approach. For example, the estimate of the
magnetization m0obtained via

m
0
kx;ky
� � ¼ � 2

m0
ehk

�
ikxð Þ siny cos’þ iky

� �
siny sin’

� kð Þ cosy
�
�1

bz kx;ky
� �

(33)

will most likely not resemble the real magnetization at all
because the reciprocal of the term within square brackets is
not defined at certain spatial frequencies.
[38] Let us dissect equation (25) to better understand how

the inversion fails and what could be done to properly invert
the magnetic field data. We observe that equation (25) may
be regarded as the composition of three different operations
(Figure 2A): (i) scaling, (ii) directional derivative [Blakely,
1996], and (iii) upward continuation. [The directional
derivative term stems from the fact that multiplying the
Fourier transform of a harmonic function by ikx, iky,
or �k corresponds to taking the partial derivatives @/@ x,
@/@ y, or @/@ z, respectively, in the spatial domain. Thus,
taking the directional derivative rH �n̂ of a harmonic
function H along an arbitrary direction n̂ ¼ sin yð Þ cos ’ð Þx̂
þ sin yð Þ sin ’ð Þŷ þ cos yð Þẑ is equivalent to multiplying its
Fourier transform by (ikx)sin y cos’+ (iky)sin y sin’� (k)
cos y.] Likewise, equation (33) may be considered as the

Figure 2. The operator mapping planar magnetization distributions into magnetic field maps viewed as
the composition of three operations. (a) Forward operator comprised of scaling, directional derivative,
and upward continuation operations. (b) Inverse operator comprised of scaling, inverse directional
derivative, and downward continuation operations. Because the operator is linear and translation invariant,
the order in which the operations are performed is unimportant.

LIMA ET AL.: FAST INVERSION OF PLANAR MAGNETIZATION

2729



composition of the individual inverse operations (i.e.,
inverse filters) (Figure 2B). This decomposition of the
magnetic inverse problem arises naturally when an equivalent
formulation based on the magnetic scalar potential f is used,
and the inversion is split into two parts [Baratchart et al.,
2013]: Bz!f, and f!M. Considering that the operator
transforming planar magnetization distributions into magnetic
field maps is both linear and translation invariant—as given by
equation (1)—the order in which these steps are performed is
not critical. Thus, each step may be viewed as the application
of a corresponding spatial filter on a two-dimensional signal
and can be analyzed separately.
[39] Two of those inverse operations are potentially

troublesome for different reasons. First, while upward
continuation is a bijective mapping (i.e., a one-to-one
correspondence)—and therefore invertible on its range—its
exponential dependence on k poses a well-known problem
in practical applications, namely the large amplification of
the spectrum at high spatial frequencies carried out by the
downward (inverse) operator, drastically exacerbating noise
and mapping area artifacts as frequency increases [Huestis
and Parker, 1979]. Second, as discussed in section 2.2,
inversion of the directional derivative operator is not possi-
ble everywhere: the directional derivative operator is always
zero at the origin (condition #1) and for y= p/2, along the
line (cos’)kx + (sin’)ky = 0 (condition #3). In effect, as
these singularities are approached, the inverse operator
grows without bound, leading to large amplification of the fre-
quency spectrum in regions around the singularities. Notice

that, unlike the downward continuation operator,
excessive magnification also takes place at low spatial
frequencies in this case.

2.4. Regularization

[40] Regularization must be introduced to stabilize the
inversion by taming excessive noise amplification and by
assigning a value to the inverse filter at spatial frequencies
where equation (25) is zero. Several approaches may be
used, each with advantages and shortcomings. Here, we
analyze two regularization schemes that have yielded good
results for SQUID microscopy data and that help illustrate
some of the issues associated with this type of magnetic
inverse problem: parametric Wiener deconvolution and
split regularization.
[41] In our case, Wiener deconvolution simultaneously regu-

larizes the downward continuation and inverse directional deriv-
ative operators, whereas split regularization regularizes them in
separate steps. In particular, the basic idea behind Wiener
regularization is to find a function cW(kx,ky) that approximates

� 2
m0
ehk ikxð Þ siny cos’þ iky

� �
siny sin’� kð Þ cosy� ��1

such

that m̂ kx; ky
� � ¼ cW kx; ky

� �
bz kx; ky
� �

is devoid of excessive
noise amplification and other inversion artifacts. (m̂ denotes
an estimate for the Fourier transform m of the true magneti-
zation.) For split regularization, the goal is to find two func-
tions cS1(kx,ky) and cS2(kx,ky) that can be adjusted
independently while approximating ehk and � (2/m0)[(ikx)
sin y cos’ + (iky)sin y sin’� (k)cos y]� 1, respectively, so

Figure 3. (a) Problem formulation for Wiener deconvolution. The original signal (two-dimensional
magnetization distribution) is degraded by the blur filter [operator mapping magnetizations M(x,y) into
magnetic field maps Bz(x,y)] and by additive noise �(x,y) (sensor and environmental noise components),
resulting in the observed signal (map of the vertical field component Bz). Wiener deconvolution essentially
estimates M from Bz by calculating an inverse filter that prevents excessive noise amplification.
(b) Schematic depicting various steps of the inversion procedure. Dashed lines represent optional
operations to reduce mapping area artifacts and improve nonnegativity. A measured field map Bz(x,y) is
multiplied by a window function Χ(x,y) (prewindowing) prior to the computation of the two-dimensional
Fourier transform. This transformed signal is first multiplied by the Wiener deconvolution filter (or by
the split regularization deconvolution filter) and subsequently multiplied by a window function wp(kx,ky)
(postwindowing). Finally, the inverse Fourier transform is applied resulting in the estimated recovered
magnetization M̂ x; yð Þ.
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as to tame artifacts in m̂ kx; ky
� � ¼ cS1 kx; ky

� �
cS2 kx; ky
� �

bz
kx; ky
� �

. The functions cW, cS1, and cS2 are adjusted by
means of parameters to control the trade-off between accu-
racy in the inversions and artifact subduing.
2.4.1. Parametric Wiener Deconvolution
[42] Wiener deconvolution is often utilized to regularize

the associated ill-posed inverse problem when implementing
deconvolutions in the presence of additive noise [Jain, 1989;
Lim, 1990]. To useWiener deconvolution in our problem, we
regard the mapping of magnetizations into field maps as a
two-dimensional linear filter that distorts the original signal
(i.e., the magnetization distribution). Additive noise may
further degrade it, resulting in a “blurred” observed signal
(i.e., the associated field map) that is recorded by the
scanning magnetic microscope (Figure 3A). In essence,
Wiener deconvolution implements an approximation to the
inverse operator by way of a spatial filter that attenuates
growth at frequencies with poor signal-to-noise ratios
(SNRs). It minimizes the mean square error (MSE) between
the original (true) magnetization M and the recovered one

M̂ , which is defined as E M x; yð Þ � M̂ x; yð Þ� �2n o
, where E

denotes the expected value of a random variable. Clearly,
the true magnetization is not known in advance, and some
of its statistical properties should instead be estimated or
postulated. Minimization of the MSE ensures that the
recovered magnetization is as close as possible to the original
one in a statistical sense. Therefore, there is no guarantee
that a particular solution obtained will be nonnegative
(i.e., strictly unidirectional). However, as we will see later,
further processing may very often improve nonnegativity.
[43] If f(kx,ky) represents the two-dimensional blur filter

[i.e., the operator that maps a unidirectional magnetization
on the x-y plane into the z component of the magnetic field
on the horizontal plane z = h, as in equation (25)], the
Wiener deconvolution filter becomes

f I kx; ky
� � ¼ f kx;ky

� �
smm kx;ky
� �

f kx; ky
� ��� ��2smm kx;ky

� �þ s�� kx;ky
� � ; (34)

where an overbar denotes a complex conjugation operation,
smm stands for the power spectral density (PSD) of the
magnetization, s�� stands for the PSD of the additive noise
�(x,y), and f is given by

f kx; ky
� �¼� m0

2
e�hk ikxð Þ siny cos’þ iky

� �
siny sin’� kð Þ cosy� �

:

(35)

[44] (The PSD is the Fourier transform of the autocorrelation
functionRHH, which is defined asE H x; yð ÞH xþ x; yþ cð Þ� �

,
where H stands for an arbitrary stationary stochastic
process. For ergodic stochastic processes, the autocorrela-

tion can be estimated by means of the formula RHH �; xð Þ ¼

lim
X!1

lim
Y!1

4XYð Þ�1
Z X

�X

Z Y

�Y
H x; yð ÞH xþ �; yþ xð Þdxdy.)

[45] The Wiener deconvolution filter in equation (34)
essentially implements a compromise between high-pass

filtering (i.e., inverse filtering for deblurring) and low-pass
filtering (i.e., noise smoothing) that is determined by the
SNR at each spatial frequency. At frequencies contaminated
with high levels of noise, inverse filtering is reduced, and
low-pass filtering prevails to decrease noise. In regions
where noise level is low compared to the signal, the
Wiener deconvolution filter approaches the inverse filter.
[46] Three underlying assumptions associated with

Wiener filtering require particular attention in our case:
(i) all two-dimensional signals involved (i.e., magnetization
distribution, additive noise component, and field map) must
have zero mean, (ii) the power spectra of the magnetization
and the noise must both be known, and (iii) noise must be
uncorrelated with the original magnetization (and, thus,
with the field). Assumption (i) does not present a problem,
as equation (26) guarantees that the mean value of the vector
magnetic field of any finite-sized magnetization distribution
with finite strength is zero. Of course, magnetic sensors that
are unable to measure absolute magnetic field, as well as
noise, drift, and asymmetrical mapping areas may create a
small nonzero mean value, which can be easily fixed prior
to performing a Wiener deconvolution.
[47] Regarding (ii), estimating the noise power spectrum is

usually achievable, even when several noise components are
present [i.e., flicker (1/f ) noise, white noise, periodic noise].
One may compute a periodogram or utilize other suitable
methods to estimate the PSD of the noise from a blank scan
(i.e., a magnetic map obtained above a zero magnetization
region). Alternatively, one may characterize the noise of the
system in the time domain and then estimate the PSD of the
spatial noise by incorporating the effects of both sampling
and scanning operations.
[48] In contrast, estimating the power spectrum of the

magnetization is not a simple task. Given that the
magnetization distribution is precisely what we aim to
reconstruct, there is not much detail we might know
beforehand. (Note that, in fact, Wiener filtering requires
knowledge of the PSD and not of the magnetization
distribution itself.) Nevertheless, certain characteristics of
the power spectrum may be postulated based on general
assumptions regarding the source distribution.
[49] As for (iii), although most magnetic field sensors

exhibit noise that is independent from the signal, some
devices might display hysteresis under certain conditions.
In addition, imprecision in the positioning of the x-y
stage—the so-called position noise—often appears in the
field map as a signal-dependent noise [Lee et al., 2004].
Furthermore, windowing effects due to finite mapping areas
and finite step sizes may also be regarded as signal-dependent
noise [see Appendix A: the Fourier transform of the rectangle
defining the mapping area is convolved with the (infinitely
extended) magnetic field map]. Thus, while these effects
may be minimized by careful sensor design and operation,
enlarged mapping areas, and finer mapping grids, it is
usually not possible to completely eliminate them.
[50] With respect to the inverse filter equation (34),

coarsely estimating the PSDs smm and s�� leads to under- or
overregularization of the solution, meaning that the calculated
Wiener filter is no longer the optimal linear filter in the sense
of minimum mean square error for the particular inverse
problem at hand. Magnetization-correlated noise may also
degrade the performance of the calculated optimum filter.
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For these reasons, it is often expedient to utilize a parametric
version of the Wiener filter to implement the deconvolution:

f Ig kx;ky
� � ¼ f kx; ky

� �
smm kx;ky
� �

f kx;ky
� ��� ��2smm kx;ky

� �þ gs�� kx;ky
� � ; (36)

where g> 0 is a parameter that controls the amount of
regularization introduced.
[51] The simplest implementation of the parametric Wiener

deconvolution assumes that both the magnetization and the
noise are white-noise stochastic processes [i.e., constant
(unity) PSDs]. In this case, the Wiener filter simplifies to

f Ig kx;ky
� � ¼ f kx;ky

� �
f kx;ky
� ��� ��2 þ g

: (37)

[52] For g = 0, no regularization is introduced and f Ig ¼ f =
f f
� � ¼ 1=f reduces to the trivial inverse filter that is
undefined whenever f=0. However, for g> 0, the denominator
in equation (37) is always nonzero as it is the sum of two
positive numbers, with g controlling the maximum
amplification of the spectrum at the singularities. While this
addresses both the indeterminacy of the inverse filter at
spatial frequencies where f is zero and the overamplification
near those frequencies, there is a tendency to produce
overregularized solutions. This happens because, in effect,
we assume a constant SNR over the whole frequency
spectrum. Thus, the amount of regularization introduced is
essentially uniform in spatial frequency and ultimately
determined by the smaller SNRs. This problem can be
ameliorated by making use of a more realistic model for
smm. Such a model should be flexible enough to reproduce
different spectral decays of the magnetization PSDwhile be-
ing simple and having a minimum number of parameters. For
instance, wemay assume that the magnetization autocorrelation
function Rmm is of the exponential form [Jain, 1989]

Rmm x; yð Þ ¼ r2e�r
ffiffiffiffiffiffiffiffiffi
x2þy2

p
; (38)

where r is a positive constant. The PSD—which is also
circularly symmetric—is given by the zeroth-order Hankel
transform of equation (38):

smm kð Þ ¼ r3

k2 þ r2ð Þ3=2
: (39)

[53] Clearly, the PSD in equation (39) decays with
frequency (r controls the rate of decay), which is a more
realistic scenario, particularly for magnetization distributions
of finite dimensions. In this case, the Wiener filter assumes
the form

f Ig;r kx;ky
� � ¼ cW kx; ky

� � ¼ f kx;ky
� �

f kx; ky
� ��� ��2 þ g k2þr2ð Þ3=2

r3

; (40)

which is equivalent to a constant magnetization PSD and a
noise PSD that increases with frequency as the reciprocal
of equation (39). The function cW denotes the particular
form of Wiener regularization utilized in this work to
process synthetic and experimental data. The regularization
of the inverse problem is governed by two parameters in this
approach: g adjusts the white-noise level, and r controls the

decay of the magnetization PSD. For our instrument and
associated experimental conditions at MIT (double-layer
shielded room with active compensation, low-Tc SQUID
sensors, and high-precision nonmagnetic X-Y scanning
stage), spatially white noise is an acceptable model for the
noise found in the recorded field maps. However, other
magnetic sensors or experimental setups may require
careful modeling of different noise components, as well as
separation of their characteristics along the scanning and
transverse directions.
[54] Notice that, for practical purposes, thismodel incorporates

equation (37) as a special case, given that smm! 1 as r!1.
[Strictly speaking, equation (39) with very large r only
approaches a constant function if k<< r. While this
condition cannot be met in the continuous domain, as k
can be arbitrarily large, the equivalence will hold once we
discretize the inverse problem and k becomes bounded
above by the Nyquist frequency (the reciprocal of twice
the step size)]. Figure 3B summarizes the main steps of
the inversion procedure.
2.4.2. Split Regularization
[55] Because direct inversion of equation (25) blows up due

to two different reasons, it can be advantageous to introduce
separate regularization schemes for the downward continuation
and inverse directional derivative operators. Let us first
regularize the downward continuation operator, which is
the inverse of the upward continuation operator. [As we
mentioned in section 2.3, the upward continuation operator
is invertible given that it is a bijection (i.e., a one-to-one
correspondence)]. This operator exhibits circular symmetry
and grows without bounds.

f dwn kx;ky
� � ¼ eh

ffiffiffiffiffiffiffiffiffiffi
k2xþk2y

p
: (41)

[56] In this regularization scheme, we essentially wish to
tame exponential growth past a cutoff frequency k0.There
are several options to achieve this goal, but we favor the
following scaling function, which allows for fine control of
the regularized operator

q kð Þ ¼ 1� 1

1þ e�xh k�k0ð Þ ¼
e�xh k�k0ð Þ

1þ e�xh k�k0ð Þ ; (42)

where x> 0 determines the attenuation of the exponential
term past k0. Thus, the regularized downward continuation
operator is given by

ef dwn kx;ky
� � ¼ cS1 kx;ky

� � ¼ C0
e 1�xð Þh k�k0ð Þ

1þ e�xh k�k0ð Þ ; (43)

where C0 ¼ ek0h is a constant and cS1 denotes the first
function in the split regularization scheme utilized in the
inversion of synthetic and experimental data in this paper.
[57] The effect of x on the regularized term is illustrated in

Figure 4A. For x< 1, the function grows without bounds—
but less rapidly than ehk—whereas for x = 1, the regularized
term flattens out past a spatial frequency� 1.5k0. For x> 1,
the function decays for frequencies above � k0, and the
rate of decay is determined by the magnitude of x.
Large values of x (>100) yield very sharp transitions,
whereas values closer to unity produce a wider transition
region. Large values of x also make the regularized term
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closely track the exponential ehk up to the vicinity of k0.
Even though this is a desirable property, sharp transitions
might lead to ringing artifacts in the solution. Typically, x
ranges between 1 and 20, where the optimal value depends
on the noise level as well as the size of the mapping
area. The effect of k0 on the regularized downward
operator is shown in Figure 4B. It essentially controls the
location of the transition between tracking of the exponential
and attenuation.
[58] Inverting the directional derivative operator is more

complicated, given that the mapping is not a one-to-one
correspondence and an inverse does not strictly exist. In this
case, we use the parametric Wiener deconvolution approach
previously described to regularize the inverse operator.
Notice that for magnetizations that are not purely in-plane,
the inverse directional derivative operator is only ill defined
near the origin of the spatial frequency plane, and most of
the overall regularization is associated with the downward
continuation operator. For those cases, which constitute
the vast majority of unidirectional magnetizations found in
practice, a simpler Wiener filter like equation (37) is often
sufficient to regularize the inverse directional derivative

operator, thereby helping reduce the total number of
regularization parameters. In particular, we utilized the
following regularized operator for the inversion of the
directional derivative operator (including the scaling factor):

cS2 kx; ky
� � ¼ f D kx; ky

� �
f D kx;ky
� ��� ��2 þ g0

; (44)

where f D kx; ky
� � ¼ � m0

2 ½ ikxð Þ sin y cos’þ iky
� �

sin y
sin’� kð Þ cosy� , and cS2 is the second function in the split
regularization scheme used for processing synthetic and exper-
imental data in this work.

2.5. Discretization of the Inverse Problem

[59] The equations described so far are all in the continuous
domain, and proper discretization of the inverse problem is
critical for attaining adequate accuracy when inverting
experimental data. The key point is realizing that equations
such as equation (25) and regularized versions of equation
(33) express relationships between continuous Fourier
transforms of the field and magnetization, which are not
available to us in practice. We must instead estimate these
quantities from discrete measurements of the magnetic field
by means of approximate equations calculated only in a
section of the spatial frequency plane. The mere discretization
of such equations is frequently not sufficient for obtaining
high-quality inversions, and solutions may be severely
contaminated by artifacts even in the ideal case where data
are noise free.
[60] A number of factors impact the quality of estimated

magnetization distributions; we present in Appendices A
and B a detailed analysis of discretization as well as a
discussion of practical issues that affect accuracy in the
inversion process. We stress that discretization should not
be overlooked, and that addressing those issues is critical
to obtaining high-quality inversions. We summarize below
the main results of our discretization and accuracy analyses.

2.6. Summary

[61] We have shown in section 2 and Appendices A and
B that:
[62] 1. The inverse problem for scanning magnetic micros-

copy is, in general, nonunique. In particular, the inversion of
in-plane (horizontal) unidirectional magnetizations with infi-
nite (unbounded) support is nonunique because distribu-
tions that are constant along the magnetization direction
but varying in the transverse direction may be added to the
solution without changing the observed field. However,
inversion of unidirectional magnetization distributions with
finite dimensions—the geometry encountered in magnetic
microscopy applications—is unique irrespective of the
magnetization direction.
[63] 2. Expressing the inverse problem in the Fourier

domain implicitly incorporates magnetization distributions with
infinite support into the modeling, owing to the transformation
of integral equation (1) into a two-dimensional convolution.
[64] 3. Calculating inversions exclusively from field

components parallel to the sample plane provides intrinsically
less accurate estimates of the magnetization than inversions
based on the field component normal to the sample plane, as

Figure 4. Regularization of the downward continuation
operator (i.e., inverse upward continuation operator) used in
the split regularization scheme. (a) Effect of the parameter
x on the regularized operator (k0 = 10). (b) Effect of the
parameter k0 on the regularized operator (x= 3).
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in this case there is a larger region in the spectrum where the
inversion cannot be directly computed.
[65] 4. A unidirectional magnetization distribution whose

direction does not lie in the plane of the sample may be
estimated—up to a constant—from the field component
normal to the magnetization plane.
[66] 5. In-plane unidirectional magnetization estimates may

exhibit inaccuracies and distortions, particularly in the form of
undulations perpendicular to the magnetization direction.
[67] 6. Regularization must be introduced to define the

inverse operator near singularities and to limit excessive
amplification of noise and spectral artifacts. We found that
both parametric Wiener deconvolution and split regularization
methods yielded good results.
[68] 7. Finite mapping areas create undulations in the

spectrum that might be magnified by the inverse filter—
even in the noiseless case—leading to ripples in the spatial
domain that could easily dominate a solution obtained
without proper regularization.
[69] 8. Finite sensor effective areas/volumes may often

negatively impact inversion accuracy if not properly
modeled. These effects are usually undone by solving an an-
cillary inverse problem prior to computing the solution to the
inverse problem for magnetizations.

3. Results and Discussion

[70] To test our technique, we performed inversions on
simulated magnetization distributions, synthetic samples,

and representative geological samples. In all examples, we
did not make use of any prior knowledge of the sample’s
characteristics to adjust the regularization. Instead, the
procedure described in section 3.2.1 was always followed
to heuristically obtain the optimal parameter values in either
equation (40) or equations (43)–(44). In particular, simulated
and synthetic samples were treated as if their magnetization
distributions were completely unknown for the purposes of
tuning the regularization. Of course, to compute the error in
the reconstruction, it is necessary to know what the true mag-
netization distribution is, which is only possible for simulated
distributions. We also describe in section 3.2.1 a method to
estimate the magnetization direction. For synthetic and
geological samples, bulk moment magnetometry provided
initial estimates for the direction of the magnetization and
for its average strength (net moment). Specific regularization
parameter values for the inversions shown in this section are
available in Appendix C. Notice, however, that those values
are useful for comparison purposes only, given that different
experimental setups, mapping areas, sensor noise levels,
mapping step sizes, and sensor-to-sample distances may
greatly impact the choice of regularization parameters.

3.1. Simulated Test Sources

[71] We devised several simulated sources and calculated
their magnetic field maps to evaluate our technique. This
allowed us to test the technique in a controlled experiment
and to characterize its behavior under challenging conditions
that would only rarely occur in practice, such as discontinuous
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Figure 5. Magnetization intensity images of the primary test distribution in the shape of the MIT logo and
of its two discretized versions. All distributions were magnetized in the +z direction (y=0�). (a) No
discretization (slabs). (b) Discretization obtained with an array of 64� 64 square source elements distributed
over the mapping area. (c) Discretization obtained with an array of 128� 128 square source elements
distributed over the mapping area. (d) Z component of the magnetic field produced by the primary test
distribution shown in Figure 5A. (e) Difference between the field map produced by the discretized
distribution shown in Figure 5B and the primary field map shown in Figure 5D. (f) Difference between
the field map produced by the discretized distribution shown in Figure 5C and the primary field map
shown in Figure 5D. (Each image corresponds to an area of 2.8� 2.8mm2. Field maps were calculated
150 mm above the sample).
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boundaries and severe noise contamination. By showing
that the inversion technique still performs reasonably well
even in those adverse cases, we demonstrate its robustness
and reveal its limitations.
[72] The magnetization distribution that served as the

foundation for all simulations used in this work consisted
of uniformly magnetized slabs with infinitesimal thickness
arranged in the shape of the Massachusetts Institute of

Technology (MIT)’s logo (Figure 5A). (All slab dimensions
are multiples of a fundamental size given by the
100� 100 mm2 square slab that represents the dot over the
letter “I.” In addition, all slabs have the same magnetization
of 0.08 A. Because the distribution is two dimensional, the
magnetization unit is A instead of A/m. If one assumed that
this was a model for a real three-dimensional sample with
30 mm thickness, the corresponding magnetization would
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Figure 6. Inversion of the field map produced by the primary test magnetization distribution in
the shape of the MIT logo (piecewise continuous) calculated using different regularization schemes.
(a) Simulated z component field map of the primary distribution shown in Figure 5A (magnetized in the
+z direction). The map was measured on a 128� 128 square grid of positions 150 mm above the sample.
(b) Target magnetization distribution with 128� 128 elements, matching the discretization parameters of
the field map. (c) Inversion of the field map shown in Figure 6A using split regularization together with
pre- and postwindowing. (d) Difference between the recovered magnetization shown in Figure 6C and
the target magnetization shown in Figure 6B. (e) Inversion of the field map shown in Figure 6A using
Wiener deconvolution together with prewindowing. (f) Difference between the recovered magnetization
shown in Figure 6E and the target magnetization shown in Figure 6B. (g) Inversion of the field map
shown in Figure 6A using Wiener deconvolution with the same parameters as in Figure 6E but without
prewindowing. Notice that artifacts due to limited mapping area dominate the solution. (h) Inversion
of the field map shown in Figure 6A using Wiener deconvolution again without prewindowing but
now with regularization parameters adjusted to tame artifacts. Notice that the spatial resolution of the
solution is severely impacted, resulting in rounded edges around the slabs (compare with Figures 6C
and 6E). (i) Difference between the recovered magnetization shown in Figure 6H and the target
magnetization shown in Figure 6B. The error in the recovery is almost twice larger (compare with
Figures 6D and 6F). Each image corresponds to an area of 2.8� 2.8mm2. Magnetization distributions
in Figures 6C, 6E, and 6H are shown in the same color scale as Figure 6B to facilitate comparison.
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be 2667A/m.) In one case, field maps were calculated
directly from this primary magnetization by means of
analytical formulas [Talwani, 1965] to test inversions of
piecewise-continuous distributions. For the remaining
simulated test sources, this primary magnetization was
discretized using either a 64� 64 grid or a 128� 128 grid

of square source elements evenly distributed over a
2.8� 2.8mm2 area (Figures 5B and 5C, respectively).
[73] For the discretized test sources, each square source ele-

ment (22.0� 22.0mm2 and 44.4� 44.4mm2 for the fine and
coarse grids, respectively) was represented by a single magnetic
dipole, which is an adequate model for a liftoff several times

Figure 7. Inversion of the field map produced by a 64� 64 discretized test magnetization distribution in
the shape of the MIT logo. (a) Simulated z component field map of the test distribution shown in Figure 7B
magnetized in the+z direction. The map was measured on a 64� 64 square grid of positions 150 mm above
the sample. (b) Target magnetization distribution with 64� 64 elements. (c) Inversion obtained with
Wiener deconvolution together with prewindowing. (d) Difference between the recovered magnetization
shown in Figure 7C and the target magnetization shown in Figure 7B. Notice the substantial improvement
in recovery error owing to the absence of discretization effects.
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Figure 8. Inversion of the field maps produced by 64� 64 and 128� 128 discretized test magnetization
distributions in the shape of the MIT logo. The z component field maps were corrupted by Gaussian white
noise such that the signal-to-noise ratio was 40 dB. (a) Simulated z component field map of the test
distribution shown in Figure 8Bmagnetized in the+z direction. The map was measured on a 64� 64 square
grid of positions 150 mm above the sample. (b) Target magnetization distribution with 64� 64 elements. (c)
Inversion obtained with Wiener deconvolution together with prewindowing. (d) Difference between the re-
covered magnetization shown in Figure 8C and the target magnetization shown in Figure 8B. (e) Simulated
z component field map of the test distribution shown in Figure 8F magnetized in the+z direction. The map
was measured on a 128� 128 square grid of positions 150 mm above the sample. (f) Target magnetization
distribution with 128� 128 elements. (g) Inversion obtained with Wiener deconvolution together with
prewindowing. (h) Difference between the recovered magnetization shown in Figure 8G and the target
magnetization shown in Figure 8F. Magnetizations in Figures 8B, 8C, and in 8F, 8G are shown in the same
color scale to facilitate comparison.
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larger than the size of the element. Because the same type of
source distribution was used both in the simulation and in the
modeled solution, this reduced discretization effects and pro-
vided smoother boundaries, allowing for artifacts in the solution
caused by the inversion process to be isolated from those

originating from discretization issues. The dipole strength was
scaled proportionally to the area of the corresponding source
element lying inside the nearest magnetization slab in
the primary test distribution. Thus, if a source element
lay completely inside of a slab, the dipole strength was 100%
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Figure 9. Inversion of field maps produced by the primary test magnetization distribution in the shape
of the MIT logo (piecewise continuous) when magnetized in directions lying in the horizontal plane.
(a) Simulated z component field map of the primary distribution shown in Figure 5A magnetized in the
directions (y = 90�, ’= 45�) and (y = 90�, ’ = 225�). The map was measured on a 128� 128 square grid
of positions 150 mm above the sample. (b) Simulated z component field map of the primary distribution
shown in Figure 5A magnetized in the directions (y = 90�, ’ = 100�) and (y = 90�, ’= 280�). The map
was measured on a 128� 128 square grid of positions 150 mm above the sample. (c) Target magnetization
distribution with 128� 128 elements, matching the discretization parameters of the two field maps. (d)
Inversion of the field map shown in Figure 9A using split regularization together with prewindowing.
Notice the silent-source artifacts superimposed to the physical solution corresponding to lines of constant
strength parallel to the magnetization direction. (e) Inversion of the field map shown in Figure 9A using
increased split regularization to greatly reduce artifacts while still achieving adequate spatial resolution.
(f) Difference between the recovered magnetization shown in Figure 9E and the target magnetization
shown in Figure 9C. (g) Inversion of the field map shown in Figure 9B using split regularization together
with prewindowing. Notice the silent-source artifacts superimposed to the physical solution corresponding
to lines of constant strength parallel to the magnetization direction. (h) Inversion of the field map shown in
Figure 9B using increased split regularization to greatly reduce artifacts while still achieving adequate
spatial resolution. (i) Difference between the recovered magnetization shown in Figure 9H and the target
magnetization shown in Figure 9C. Magnetization distributions in Figures 9C, 9D, 9E, 9G, and 9H are
shown in the same color scale to facilitate comparison.
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of the magnetization intensity times the area of the element. If,
on the other hand, only 50% of the element lay inside the slab,
for instance, the dipole strength was half that value.
[74] Our first set of inversions (Figures 6–9 and S2–S4)

focused on vertically magnetized unidirectional magnetization
distributions with finite support. As discussed above, we should
be able to uniquely retrieve these magnetizations from z compo-
nent field data. The two discretized distributions (Figures 5B and
5C) are considered the target distributions (that is, the bench-
marks for the inversions of our simulated test sources), because
they are merely discretized versions of the piecewise-continuous
primary magnetization distribution. Clearly, they are not
attainable in practice if one were to invert field maps associated
with the primary test distribution. This is a direct consequence of
theWiener deconvolution formulation, given that the strength of
the discretized magnetization is always smaller than or equal to
that of the nondiscretized one. The equality would only hold if
the discretization was such that every planar source element
lay fully inside or fully outside of a slab. Therefore, they cannot
be the solutions that minimize the MSE between the recovered
and the true magnetizations, even in the ideal case where the
PSD of the true magnetization is known beforehand and
noise is absent. This is because aminimumMSE solution cannot
be everywhere smaller than the true magnetization, given that
it would violate the error minimization condition. (Similarly, a
least squares best fit line will never lie below or above all
data points.) Interestingly, their field maps are not the closest
ones (in the least squares sense) to the field map associated
with the primary distribution either. This is evident from
Figures 5D–5F, which present the field maps produced by
the primary test magnetization distribution and the discrepan-
cies between this field map and those associated with the two
discretized test distributions. As expected, the finer the
discretization, the smaller the difference between the field maps
of the discretized and nondiscretized distributions.
[75] Therefore, if the criterion consisted of minimizing

the MSE between model and experimental field maps—as
usually is the case in spatial-domain inversion techniques—
the discretized distributions would not be the solutions
yielding the smallest residuals. Nevertheless, these target
distributions are fairly close to the best mathematical
solutions in the least squares sense and are, in fact, the
expected physical ones.
[76] All examples in this section were calculated for a

fixed liftoff h= 150 mm, which is a representative liftoff in
scanning magnetic microscopy. As discussed in Appendix
A, this value by itself is unimportant: the critical quantity is
the ratio of the step size to the liftoff (if we scale both the
liftoff and the step size by a factor C, the discretized inverse
problem remains unchanged). We utilized the normalized
root-mean square deviation (NRMSD) to numerically quan-
tify the discrepancies between the recovered and true
magnetizations:

NRMSD ¼

Zþ1

�1

Zþ1

�1
M̂ x; yð Þ �M x; yð Þ�� ��2dxdy

Zþ1

�1

Zþ1

�1
M x; yð Þj j2dxdy

266666664

377777775

1=2

; (45)

whereM̂ andM stand for the recovered and truemagnetization

distributions, respectively. We also computed the difference
between the two magnetizations, which reveals the spatial
distribution of the error and the degree to which it is
spatially correlated.
[77] The SNR is used to quantify the amount of signal

degradation in the presence of noise, being usually expressed
in decibels (dB):

SNR ¼ 10 log10 s2signal=s
2
noise

� �
; (46)

where s2signal is the variance of the (noiseless) field map, and
s2noise is the variance of the noise. In some of our examples,
we used additive Gaussian white noise to simulate sensor
noise. We assume that measurements are performed inside
a shielded chamber, so that environmental noise can be
considered negligible. Notice, however, that other experimental
configurations using different sensors and scanning
stages may require revised sensor and environmental noise
models to better reflect their spectral characteristics. In
addition, signal-dependent noise may also have to be taken
in account depending on the degree of imprecision in
positioning the sample.
[78] We compared different regularization schemes for

inversions of primary test distribution field data (Figure 6).
Although the true magnetization distribution is (piecewise)
continuous in this case, both the field map and the source
model must necessarily be discretized in order to produce
finite amounts of data. As in all examples in this paper, the
magnetization model and field map discretizations are
identical, meaning that each source element shares the same
horizontal (x,y) coordinates with a corresponding magnetic
field measurement. Depending on the case, this discretization
may or may not coincide with the discretization of the
simulated magnetization distribution (if applicable). In
this example, the simulated z component magnetic field
map (Figure 6A) was calculated on a 128� 128 square
grid of positions 150 mm above the test magnetization
shown in Figure 5A, which was magnetized in the+z
direction (y = 0�). The 128� 128 discretized target
magnetization (intensity map) is shown in Figure 6B. We
first computed an inversion using the split regularization
scheme with Tukey prewindowing (see Appendix A),
which is shown in Figure 6C. Figure 6D displays the
difference between this estimated magnetization distribution
and the target magnetization distribution (Figure 6B),
corresponding to an NRMSD of 0.11. Notice that most of
the discrepancies are located predominantly at the edges of
the slabs. This behavior is expected because discontinuities
require very high frequencies to be properly represented in
the Fourier domain, which is not attainable once the inverse
problem is discretized and regularization is introduced to
tame noise amplification. As a consequence, sharp edges
are often not well represented in recovered magnetizations
leading to localized increases in the recovery error. The
dissimilarities seen in the recovered magnetization originate
from three main sources (see Figure 5 and Appendix A):
(i) differences in the field maps produced by the simulated
sources (piecewise continuous) and model source distribution
(discretized), (ii) artifacts due to limited mapping areas,
and (iii) the maximum spatial frequency for which the
deconvolution is calculated, which is determined by the
field map step size.
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[79] Next, we calculated an inversion of the same field
map using Wiener regularization with Tukey prewindowing
(Figure 6E). Figure 6F displays the difference between this
recovered magnetization and the target magnetization
shown in Figure 6B, corresponding to an NRMSD of 0.10.
In this specific case, use of the Wiener regularization yielded
slightly better results. To illustrate how prewindowing can
greatly aid in taming mapping area artifacts while yielding
higher spatial resolution estimates for the underlying
magnetization distributions, we also computed the inversion
using Wiener deconvolution with the very same parameters
employed in the inversion shown in Figure 6E but without
prewindowing (Figure 6G). It is clear that the solution is
dominated by artifacts far exceeding the strength of the
primary magnetization. To reduce such artifacts, we have
to increase the degree of regularization (Figure 6H). While
such a solution is still acceptable, it has much lower
spatial resolution than those obtained with prewindowing
(cf. Figures 6C and 6E). The difference between this
solution and the target magnetization shown in Figure 6B
is larger than with prewindowing (NRMSD= 0.16)
(Figure 6I). Notice that, as expected, there is a significant in-
crease in the recovery error. Comparable results for
the primary test distribution were obtained when using a
64� 64 discretized field map instead (Fig. S2 in supporting
information).
[80] To distinguish discretization effects from other

sources of inaccuracy, we computed inversions of field
maps generated by the target magnetization distributions
rather than by the primary distribution. In this case, the
simulated sources and model sources have the same
discretization. Figure 7A shows the simulated z component
magnetic field map produced by the 64� 64 target
magnetization displayed in Figure 7B. The target distribution
was magnetized in the+z direction, and the field map was
computed on a 64� 64 grid of positions 150 mm above the
sources. Figure 7C shows the inversion obtained with
Wiener deconvolution and Tukey prewindowing, while
Figure 7D shows the difference between this solution and
the target magnetization (Figure 7B), which corresponds
to an NRMSD of 0.05. Notice that both the discrepancies
and the NRMSD dropped sharply in this case (compare
Figures 7D and S2D). Intriguingly, such an improvement
could not be achieved for the 128� 128 test magnetization
distribution (Fig. S3). The reason for this lies in the
extended spatial frequency range where the deconvolution
is calculated for the latter. It clearly illustrates that the
limiting factor here is linked to mapping area artifacts. In
particular, undulations in the spectrum of the magnetic field
map caused by a limited mapping area require an increased
degree of regularization at higher spatial frequencies to
avoid excessive magnification by the inverse operator,
unlike for the 64� 64 case where accuracy was mostly
impacted by discretization issues. Whereas this may seem
surprising at first, one cannot expect to improve spatial
resolution without trading off accuracy.
[81] We then analyzed the effects of noise contamination

in the field maps on the recovery quality. Here, we also
utilized discretized simulated sources in the inversions to
again decouple discretization effects from noise effects.
Figure 8A shows a 64� 64 z component field map simulated
150mm above the 64� 64 test distribution (Figure 8B), which

was again magnetized in the+z direction. The field map was
corrupted by white noise so as to yield a SNR of 40 dB, and
the inversion was obtained with Wiener deconvolution and
Tukey prewindowing (Figure 8C). The difference between
this inversion and the target magnetization is displayed in
Figure 8D (NRMSD= 0.22). Notice that the error in the
recovery is similar to the one achieved with the primary test
distribution with noiseless data (cf. Fig. S2).
[82] Increasing the resolution of the field map and

corresponding model source discretization resulted in an
increase in recovery error and decrease in spatial resolution
compared to the noiseless case. A 128� 128 z component
field map was simulated 150 mm above the 128� 128 test
magnetization shown in Figure 8F and corrupted by white
noise (SNR = 40 dB) (Figure 8E). The test distribution was
magnetized in the+z direction. The inversion was calculated
using Wiener deconvolution and prewindowing (Figure 8G).
Figure 8H shows the difference between the recovered and test
magnetizations, which corresponds to an NRMSD of 0.15.
Given that the deconvolution is computed to higher spatial
frequencies, additional regularization is required to prevent
excessive noise amplification, thereby impacting spatial res-
olution and accuracy (compare Figure 8G with Figures 6C
and 6E). We repeated these tests under very low SNRs to
determine whether it was still possible to recover meaningful
information in such adverse conditions. Figure S4 shows the
inversion results for an SNR of just 10 dB. While it is not
possible to completely filter out noise in the solution
without drastically sacrificing spatial resolution, the results
demonstrate that the technique is, in fact, quite robust.
[83] Our second set of inversions focused on the

reconstruction of in-plane magnetizations, which as
discussed above are likely to be limited by the presence of
magnetically silent sources superimposed to inversions.
We carried out these inversions using unidimensional
distributions (i.e., dual-polarity unidirectional magnetizations
that effectively correspond to two antipodal magnetization
directions) to demonstrate the performance of the technique
for this broader category of magnetizations patterns. We
utilized a modified version of the primary test distribution,
in which the main part of the letter “I” is magnetized in
the antipodal direction, to generate the magnetic field maps.
A 128� 128 z component field map was simulated at a
liftoff of 150 mm, corresponding to the modified primary
test distribution magnetized in the horizontal plane along
the directions (y = 90�, j = 45�) and (y = 90�, j = 225�)
(Figure 9A). A second 128� 128 z component field map
was simulated at a liftoff of 150 mm, corresponding to the
modified primary test distribution also magnetized in
the horizontal plane but along different directions: (y = 90�,
j = 100�) and (y = 90�, j = 280�). The 128� 128 target
distribution is shown in Figure 9C, while inversion of the data
shown in Figure 9A obtained with split regularization and
(soft) Tukey prewindowing is displayed in Figure 9D.
Notice the streaks along the magnetization direction
associated with silent sources superimposed on the solution
(NRMSD =0.30) (see section 2.2). Increasing the regulari-
zation helps reduce such artifacts while still achieving a
good spatial resolution (Figure 9E). Figure 9F displays the
difference between the inversion shown in Figure 9E and
the target magnetization shown in Figure 9C, corresponding
to an NRMSD of 0.13. The inversion for the second set of
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magnetization directions was also obtained with split
regularization and (soft) Tukey prewindowing (Figure 9G).
Notice that the streaks associated with silent sources
appear again oriented along the magnetization directions
(NRMSD= 0.36). The inversion obtained with enhanced
regularization is mostly free of artifacts (Figure 9H).
Figure 9I displays the difference between the inversion
shown in Figure 9H and the target magnetization shown in
Figure 9C, corresponding to an NRMSD of 0.14. Upon
close inspection of Figures 9D and 9G, we can see that the
streaks are not perfectly constant throughout their lengths.
This phenomenon is due to the concurrent effect of having
finite mapping areas, which tends to introduce undulations
in the solution.

3.2. Synthetic Samples

[84] We proceeded to test our technique on real experimental
magnetic field data taken on controlled, synthetic samples.
The samples were toner particles deposited on a sheet of
paper in different geometric configurations using a laser
printer. The pieces of printed paper were magnetized and
then taped to 1 inch nonmagnetic quartz discs, which were
subsequently scanned with our SQUIDmicroscope instrument
in the MIT Paleomagnetism laboratory shielded room
(ambient field<40 nT). To test more complicated patterns
that are still easily recognizable, we printed the logos of
the three institutions involved in this research: the MIT,
Vanderbilt University (VU), and the Institut National de
Recherche en Informatique et en Automatique (INRIA).
Each synthetic sample was magnetized in a different way
by imparting either one or two strong-field isothermal
remanent magnetization (IRM) patterns, as described
below.When the direction(s) of the magnetization distribution
could not be estimated with confidence prior to performing an
inversion, we utilized a commercial superconducting rock
magnetometer (2G Enterprises, model 755) to measure the
net moment of either whole synthetic samples (unidirectional
and unidimensional patterns) or their constituent pieces
prior to assemblage (bidirectional patterns).
3.2.1. Unidirectional Case—Finding the Magnetization
Direction and Adjusting the Regularization Parameters
[85] We began by magnetizing the VU logo synthetic

sample into the plane (i.e., �z direction) (Figure 10A). We
mapped the z component of the magnetic field 280 mm
above the sample (Figure 10B). We then calculated
inversions for the measured field map using three different
degrees of regularization of the Wiener deconvolution,
aiming to exemplify how the regularization parameters are
heuristically adjusted in practice, particularly when the
target magnetization is not known.
[86] In this case, we have an accurate estimate for the

magnetization direction because we imparted a laboratory
magnetization in a fixed known direction and the sample
does not exhibit magnetic anisotropy. However, suppose
that such information was not known beforehand and that
a bulk moment magnetometer was not readily available to
provide an initial guess for the magnetization direction.
We estimate the direction by uniformly tiling a unit sphere
and, for each direction, computing an inversion (magnetization
distribution). Special algorithms for distributing points on a
sphere avoid the concentration of points around the poles
and ensure uniform sampling of all possible directions

[Saff and Kuijlaars, 1997]. A practical criterion to find
the magnetization direction consists of computing the size
(L1 norm) of the negative part of the magnetization
estimated for each direction:

IN M̂ y;’
� � ¼ Z Z

max �M̂ y;’ x; yð Þ; 0� �
dxdy; (47)

where M̂ y;’ stands for the magnetization recovered for the
direction (y, j). The estimated magnetization direction is
the one corresponding to the solution with the smallest
negative part.
[87] Because our inversion technique is very fast, we

illustrate this approach by tiling the sphere with a large
number of cells. For each of the 600 directions, we compute
the size of the negative part of the inversion of the magnetic
field data shown in Figure 10B calculated in that particular
direction. We then build a map of the size of the negative
part as a function of magnetization direction, as shown in
Figure 10C. Here, we first normalize the norm of the negative
part by the value corresponding to the direction exhibiting the
largest negative part—as only relative magnitude is relevant—
and present the data in a log color scale to enhance
visualization. It is clear that the direction with the smallest
negative part corresponds to the actual magnetization
direction �z.
[88] In practice, an initial guess for the magnetization

direction is almost always available from bulk moment
magnetometry, a priori knowledge about the sample, or
qualitative analysis of the field maps. In this situation, we
tile a section of the sphere around the estimated direction
and compute the norm of the negative part only in that
region. Besides saving time, this allows for finer sampling
of directions. It is usually beneficial to “fine tune” the
magnetization direction used in the inversion because the
initial estimates may often be biased by background sources
such as sample mounts and holders. Even in the case of
nonunidirectional magnetization distributions, it is advisable
to manually search around the initial guess for the direction
that effectively minimizes streaking. The magnetization
directions for all examples with experimental data shown
in this paper were obtained following one of these two
procedures, depending on whether the magnetization was
unidirectional or unidimensional/multidimensional.
[89] Next, we examine the issue of adjusting the regularization

parameters to find solutions with superior spatial resolution
and accuracy with minimal occurrence of artifacts. The key
point is realizing the trade-off present in equation (40) and
in equations (43)–(44): increasing the regularization tames
artifacts and noise magnification at the expense of spatial
resolution and accuracy. Solutions that are overregularized
usually look overly spatially smoothed. On the other hand,
underregularized solutions typically appear unnaturally
sharp and may exhibit peaking and ringing artifacts.
Plotting the spatial frequency spectrum of the solutions as
the parameters are changed is often very helpful to ascertain
whether a particular solution is under- or overregularized.
[90] We illustrate this point by computing inversions of

the fieldmap shown in Figure 10B using different regularization
parameters. The first inversion is clearly overregularized
(Figure 10D), as it actually exhibits lower spatial resolution
than the experimental magnetic field map. A plot of the
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Figure 10. Inversion of experimental magnetic field data for a synthetic sample with unidirectional
magnetization distribution. (a) Optical picture of synthetic sample consisting of VU’s “V-Star” logo printed
on a small piece of paper. A sIRM (900 mT peak field) was imparted in the �z direction. (b) Z component
field map of the sample shown in Figure 10Ameasured with our SQUIDmicroscope. The map was measured
on a 294� 294 square grid of positions 280mm above the sample with a step size of 75mm. (c) Plot of the
normalized size of the negative part of the recovered magnetization as a function of the magnetization
direction used in the inverse model (log color scale). (d) Inversion of the field map shown in Figure 10B
obtained with Wiener deconvolution together with prewindowing using an excessive degree of regularization.
Notice that the recovered magnetization is “blurry,”with an effective spatial resolution that is in fact lower than
the one of the associated field map. (e) Plot of the magnitude of the two-dimensional Fourier transform of the
magnetization distribution shown in Figure 10D (log color scale). Note that the frequency spectrum is almost
exclusively comprised of low spatial frequencies, confirming the low spatial resolution observed in
Figure 10D due to excessive regularization. (f) Inversion of the field map shown in Figure 10B obtained with
Wiener deconvolution together with prewindowing using an insufficient degree of regularization. Notice that
the recovered magnetization is unnaturally sharp, with visible artifacts around the two left-hand vertices of
the star. Inset shows detailed view of the upper left-hand vertex of the star and the artifacts located in that region.
(g) Plot of the magnitude of the two-dimensional Fourier transform of the magnetization distribution shown in
Figure 10F (log color scale). In this case, the frequency spectrum contains an excess of high frequencies that
extends to the upper and lower limits of the spatial frequency axes, which correspond to the maximal spatial
frequencies that can be represented in the discrete domain for a given mapping step size. (h) Inversion of the
field map shown in Figure 10B obtained with Wiener deconvolution together with prewindowing using an
adequate degree of regularization. Notice that the recovered magnetization is fairly sharp but free of artifacts.
(i) Plot of the magnitude of the two-dimensional Fourier transform of the magnetization distribution shown in
Figure 10H (log color scale). Here, we observe an adequate amount of high-frequency spectral content with
sufficient distance from the limits of the spatial frequency axes, which ensures superior spatial resolution
without occurrence of noticeable artifacts in the solution. Magnetization distributions in Figures 10D, 10F,
and 10H are shown in the same color scale to facilitate comparison. Spatial frequency axes in Figures 10E,
10G, and 10I range from�p/Δ to +p/Δ, where Δ= 75mm is the mapping step size.
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magnitude of the two-dimensional Fourier transform
(Figure 10E) confirms that the frequency spectrum is
essentially comprised of low spatial frequencies only.
[Notice that the limits of the frequency axes correspond to
the maximal spatial frequencies that can be represented in
the discrete domain for a step size of 75mm (i.e.,	p/Δ, where
Δ is the mapping step size). Decreasing the regularization
too much led to an inversion with artifacts around the two
left vertices of the five-pointed star (Figure 10F). In this
case, the spectrum (Figure 10G) contains an excess of
high-frequency content that extends to the maximal spatial
frequencies. This creates a cropping of the spectrum that
leads to artifacts in the solution. Further adjustment of the
regularization parameters yielded a solution with good
balance between spatial resolution and incidence of
artifacts (Figure 10H). The associated frequency spectrum
(Figure 10I) displays considerable high-frequency content
but with enough distance to the maximal spatial frequencies
to avoid spectral cropping effects.
[91] In general, artifacts in the spectrum of underregularized

solutions associated with excessive amplification of noise and
spectral undulations may also be visible in those plots,
depending on instrument and environmental noise levels
and the size of mapping areas. If this occurs, increased
regularization must be introduced to prevent peaking in
the spectral content as well as to ensure spectral decay near
the maximal frequencies. This means decreasing the spatial
resolution, which is expected because of spectral deterioration
due to increased noise levels and/or finite mapping area effects.
3.2.2. Unidimensional Case
[92] As a follow-up to the last example in section 3.1, we

then inverted a unidimensional magnetization comprised of
the MIT logo in which the main part of the letter “I” was
magnetized into the plane (�z direction) while the remainder
of the logo was magnetized in the opposite direction (+z). In
addition, the letter “I” (excluding the dot) consisted of a

dithered pattern instead of a solid one. In this case, we can
assess the inversion of unidimensional distributions without
the additional presence of superimposed silent sources.
Figure 11A shows a photograph of the sample, and
Figure 11B shows the map of the z component of the field
measured 180 mm above the sample. We calculated an
inversion using split regularization and postwindowing
(Hann—see Appendix A) (Figure 11C). The increase in
spatial resolution relative to the field map and absence of
artifacts is clear: in the recovered magnetization, the edges
of the rectangles are much sharper and straighter, and the
dithering pattern matches perfectly the one seen in the
optical picture.
3.2.3. Bidirectional Case
[93] We concluded our tests with synthetic samples by

inverting a distribution that is magnetized in two different
directions that are not antipodal (bidirectional magnetization).
Clearly, our unidirectional magnetization model is inadequate
to reproduce such a distribution. However, Appendix equation
(B10) shows that if one of the directions used in the inversion
is correct, the recovered distribution is always comprised of
the sum of a correct inverted component and an incorrect
one. This means that if there is enough spatial separation
between the regions containing the two components,
we can still individually reconstruct at least part of the
magnetization accurately. Such a behavior is quite contrasting
to techniques in the spatial domain that rely on matching of
field maps, in which case the whole solution is affected in an
attempt to minimize the residual. We also use this example
to demonstrate what happens when a unidirectional
magnetization is reconstructed using an incorrect direction.
[94] Figure 12A shows a picture of the synthetic sample

comprised of the INRIA logo. The paper was cut along the
small gap separating the letters “N” and “R,” and each piece
was magnetized separately. The letters “IN” were magnetized
in the horizontal plane (y = 93�, j = 191�), whereas the

A B
B

z
 (μT)

-10

-5

0

5

10

C
M (A)

-0.01

-0.005

0

0.005

0.01

3 mm

M (mA)
-5 0 5

Figure 11. Inversion of experimental magnetic field data for a sample with unidimensional magnetization
distribution. (a) Optical picture of synthetic consisting of MIT’s logo printed on a small piece of paper.
An IRM (400 mT peak field) was imparted in the +z direction with the exception of the lower part of
the letter “I,” which was cut out, magnetized in the antipodal direction �z using the same peak field,
and then taped back together. (b) Z component field map of the sample shown in Figure 11A measured
with our SQUID microscope. The map was measured on a 256� 414 rectangular grid of positions
180 mm above the sample with a step size of 35 mm. (c) Inversion of the field map shown in Figure 11B
obtained with split regularization together with prewindowing. Observe the much sharper and well-defined
edges of the individual rectangles forming the logo, indicating an improvement in spatial resolution
compared to the original field map. Inset: detail of the main part of the letter “I” showing that the hatched
pattern in the recovered magnetization matches the one seen in the optical picture. Because the Fourier
technique does not strictly enforce positivity, high-quality recovery of such an antipodal magnetization
distribution is possible. Color scale in Figure 11C inset is lightly saturated to help visualize details of
the magnetization.
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remainder of the logo was magnetized in the off-plane
direction (y = 18�, j = 280�). The two pieces of paper were
then taped back together and mounted on a quartz disc.
Figure 12B displays the map of the z component of the
magnetic field measured 200 mm above the sample. Notice
that the bidirectional character of the magnetization can be
directly observed in the field map. Figure 12C shows the
inversion calculated along the first direction (in-plane) using
split regularization. A careful inspection of the solution reveals
that, in fact, the letters “IN” are well reconstructed but that
there is superimposed streaking originating from the second
component reconstructed with the incorrect direction.
Specifically, the letter “I” is mostly free of artifacts, whereas
the adjacent streaking extends partly over the letter “N.” An
inversion calculated with the same method for the second
direction (off-plane) is shown in Figure 12D. Here, the situ-
ation is reversed: the letters “RIA” are well reconstructed,
while the letters “IN” exhibit streaking. Because the arti-
facts are much more concentrated in space in the latter case,
the second component of the bidirectional magnetization is
almost free of superimposed artifacts.

3.3. Geological Samples

[95] Having tested the technique and characterized its per-
formance under various controlled conditions, we proceeded
to invert magnetic data measured from 30mm thin sections
of actual geological samples. We began by revisiting the
NRM and sIRM inversions for the sample of Hawaiian basalt
first presented inWeiss et al. [Weiss et al., 2007a, 2007b]. This
sample not only provides an excellent opportunity to test the
technique on a well-studied specimen, but also allows
the comparison with results previously obtained using spa-
tial-domain inversion techniques. We follow this demonstra-
tion of the technique with an inversion to identify the spatial
distribution of high-coercivity grains in a 30mm thin section
of the eucrite meteorite ALHA81001 (a basaltic achondrite

thought to be from asteroid Vesta) that highlights the power
of scanning magnetic microscopy [Fu et al., 2012].
[96] Figure 13A shows a photograph of the 30 mm thin

section of tholeiitic basalt taken from a Hawaiian Scientific
Drilling Project 2 core (see [Weiss et al., 2007a] for a complete
description of the sample). The z component of the magnetic
field of the natural remanent magnetization was measured
190 mm above the sample and then bilinearly interpolated
by a factor of 2 (Figure 13B) to extend the spatial frequency
range where the inversion is calculated. After completing
the demagnetization sequence of NRM, the sample was
given a sIRM, which was then mapped at the same height as
the NRM. The map of the sIRM field was also interpolated
by a factor of 2 (Figure 13C). We performed the inversion of
the NRM field map usingWiener deconvolution together with
postwindowing (Hann). The recovered NRM magnetization
distribution (Figure 13E) displays a strong correlation with
textural features observed in the optical image shown in
Figure 13A. The recovered NRM direction was (y = 40�,
j = 130�), and the net moment calculated by integrating
the reconstructed magnetization was 6.8�10�8 Am2. The
recovered sIRM magnetization distribution (Figure 13F)
also exhibits a strong correlation with features observed in
the optical image shown in Figure 13A. The recovered
sIRM direction was (y = 0�), and the net moment calculated
by integrating the reconstructed sIRM magnetization was
2.4� 10�6 Am2.
[97] Comparison with previous results obtained with a

technique in the spatial domain [Weiss et al., 2007a] reveals
many similarities and also some noteworthy discrepancies,
apart from the significant improvement in inversion speed
(see Table 2 and Figure 13D). For the NRM inversion, while
the overall appearance of the recovered magnetizations is
similar, the Fourier reconstruction not only displays fewer
artifacts but also better compromise between spatial resolution
and noise magnification. Specifically, while a few features

Figure 12. Inversion of magnetic field data for a synthetic sample consisting of INRIA’s logo printed on a
small piece of paper. A bidirectional IRM (peak field of 400 mT) was imparted by cutting the paper along
the existing gap between the letters “N” and “R.” The letters “IN” were magnetized in the sample plane in
the direction (y = 93�, ’= 191�), whereas the letters “RIA” were magnetized mostly out of the plane in the
direction (y= 18�, ’ = 280�). The logo was subsequently taped back together on a quartz disc. (a) Optical
picture of the synthetic sample. (b) Z component field map of the sample shown in Figure 12A measured
with our SQUID microscope. The map was measured on a 300� 400 rectangular grid of positions
200 mm above the sample with a step size of 50 mm. (c) Inversion of the field map shown in Figure 12B
obtained with split regularization assuming unidimensional magnetization oriented in the direction (y= 93�,
’ =191�). Notice that the letters “IN” are well reconstructed, whereas the “RIA” letters exhibit extended
artifacts due to the incorrect recovery direction for that segment of the sample. Some of these artifacts
actually extend over the “N” letter. (d) Inversion of the field map shown in Figure 12B obtained with split
regularization along the direction (y= 18�, ’= 280�). Notice that, in this case, the letters “RIA” are the
ones well reconstructed, whereas the “IN” letters exhibit artifacts around them due to the incorrect
recovery direction for that segment of the sample.
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in the spatial-domain inversion might appear sharper, this
comes at the expense of accuracy—indicated by moderate
peaking in the solution and larger errors in the estimated
net moments—very much like what is observed in the
example shown in Figure 10F. The Fourier solution also
does not exhibit weak artifacts located near the sample’s

edges like the spatial-domain NRM inversion does.
Regarding the sIRM inversion, both inversion techniques
yield solutions that are free of artifacts around the edges of
the sample. However, unlike the spatial-domain inversion,
the Fourier solution does not suffer from artifacts associated
with segmentation of the field map to solve smaller
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Figure 13. Inversion of magnetic field data for a 30 mm thin section of Hawaiian basalt previously
analyzed in Weiss et al. [2007b, 2007c] using spatial-domain techniques. (a) Reflected-light picture of
the thin section. (b) Z component magnetic field map of the natural remanent magnetization of the thin sec-
tion measured with our SQUID microscope on a 250� 200 rectangular grid of positions 190 mm above the
sample with a step size of 100mm. The original NRM field map was subsequently bilinearly interpolated to
produce a 500� 400 field map with a step size of 50 mm. (c) Z component magnetic field map of the sat-
uration IRM of the thin section measured with our SQUID microscope on a 250� 200 rectangular grid of
positions 190 mm above the sample with a step size of 100 mm. The original sIRM field map was
subsequently bilinearly interpolated to produce a 500� 400 field map with a step size of 50 mm.
(d) Inversion of the NRM field map shown in Figure 13B obtained with the spatial-domain technique
described in Weiss et al. [2007a]. Because source elements were distributed in a region smaller than
the field map, the recovered magnetization shown in this figure was padded with zeros so as to yield
the same size as the Fourier model. Notice the artifacts located around the edges of the spatial-domain
model, as well as in the middle of the magnetization distribution. The latter are due to splitting the
inversion into two separate inverse problems for the top and bottom parts of the field map, respectively,
to lessen memory requirements. (e) Inversion of the NRM field map shown in Figure 13B obtained with
Wiener deconvolution and postwindowing. (f) Inversion of the sIRM field map shown in Figure 13C
obtained with Wiener deconvolution and postwindowing.
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spatial-domain inverse problems in order to reduce memory
and processing requirements. Perhaps the most striking
difference between inversions obtained with the two methods
lies in peak magnetization strengths. When adjusted for A/m
units by taking into account sample thickness, the NRM
Fourier inversion has a peak strength of 44A/m as opposed
to the 83A/m obtained in the spatial-domain inversion. The

sIRM also exhibits a significant discrepancy in peak strength,
with the Fourier inversion reaching 1180A/m while the
spatial-domain inversion peaks at 1700A/m.
[98] Table 2 presents a comparison of different estimated

magnetization parameters using the two techniques. In
general, the Fourier inversions yielded estimated magnetization
parameters much closer to the bulk measurements made

Table 2. Comparison of Several Magnetization Parameters Obtained With the Fourier Inversion Technique, Spatial-Domain Inversion
Technique, and Bulk Moment Measurementsa

Spatial Domain Fourier Domain Rock Magnetometer

Net Moment - NRM 9.0� 10�8 Am2 6.8� 10�8 Am2 6.4� 10�8 Am2

Polar angle u - NRM 47� 40� 45� 	 3�
Azimuthal angle w - NRM 122� 130� 120� 	 3�
Peak magnetization - NRM 83A/m 44A/m –
Net Moment - sIRM 1.6� 10�6 Am2 2.5� 10�6 Am2 2.2� 10�6 Am2

Polar angle u - sIRM 0� 0� 0� 	 1�
Azimuthal angle w - sIRM 0� 0� 2� 	 1�
Peak magnetization - sIRM 1700A/m 1180A/m –

aThe spatial-domain results were obtained by Weiss et al. [2007a].
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Figure 14. Inversion of magnetic field data for a 30 mm thin section of the HED meteorite ALHA81001.
Following a sequence of alternating field (AF) demagnetization steps of the NRM, a strong-field IRM was
imparted along the +z direction (peak field 280 mT). A 50mT AF demagnetization step was subsequently
applied prior to mapping to remove contributions from low and medium coercivity grains. (a) Z component
magnetic field map of the thin section measured with our SQUID microscope on a 300� 300 square grid of
positions 190 mm above the sample with a step size of 50mm. The original field map was subsequently
bilinearly interpolated to produce a 600� 600 field map with a step size of 25 mm. (b) Crossed-polars
transmitted-light photograph of the thin section. Red dashed rectangle delimits the region corresponding
to the magnified views shown in Figures 14E and 14F. (c) Transmitted-light photograph shown in
Figure 14B with the retrieved magnetization (shown in Figure 14D) superimposed. Notice the strong
correlation between source distribution and textural features. (d) Inversion of the field map data shown
in Figure 14A obtained with split regularization. (e) Detailed view of the bottom left section of the
photograph shown in Figure 14B. Red arrows indicate dark regions containing fine-grain assemblages of
plagioclase and silica glass together with accessory ilmenite and troilite. (f) Detailed view of the bottom left
section of the image shown in Figure 14C.
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with a superconducting rock magnetometer. The only
exception is the NRM direction; for this quantity, the
spatial-domain technique recovered magnetization angles
closer to the ones obtained for the bulk moment.
Interestingly, this is the case where the spatial-domain solution
exhibits artifacts around the edges of the magnetization,
which suggests that at least one of the directional parameters
was retrieved with less accuracy by that technique when
searching for the best direction. Indeed, we interpret the
direction obtained via Fourier method as more accurate
because (i) the presence of artifacts in solutions computed
for directions closer to the measured net moment direction
suggests a slight streaking effect taking place due to an error
in the magnetization direction (cf. section 3.2.3 and
Appendix B.4), and (ii) such a small deviation in direction
from the measured net moment (~8� total angular deviation)
could easily be attributed to minor registration errors—
particularly in declination—between the commercial
magnetometer and the SQUID microscope, which were
located in different laboratories at the time of those measure-
ments, and to weak background sources (e.g., sample mounts
and holders) slightly skewing the measured net moment.
[99] Regarding the discrepancy in peak values between

inversions using the two methods, stronger peaks would
be expected in underregularized solutions. In fact, one of
the drawbacks of the iterative unidirectional inversion
method in the spatial domain presented in Weiss et al.
[2007a] is the lack of explicit regularization parameters. In
that case, regularization can only be indirectly adjusted by
changing the criteria for stopping the iterations, which are
difficult to optimize given the much slower speed of that
method. Incorporating Tikhonov regularization into the
matrix formulation in our spatial-domain method could
possibly ameliorate this issue, as it allows for greater control
over the trade-off between spatial resolution and noise
magnification, leading to solutions with fewer artifacts and
better overall accuracy. The most straightforward approach
consists of increasing the number of rows in the matrix to
directly incorporate the constraints associated with Tikhonov
regularization. The disadvantages of this approach include
(i) an increase in memory requirements, which are already
substantial in that method; (ii) slower speeds due to handling
of larger matrices; and (iii) uncontrolled interaction between
the Tikhonov regularization and the nonnegativity constraint.
Whereas using algorithms specifically developed to
combine both regularization and nonnegativity constraints
may partly overcome such difficulties [e.g., de Villiers
et al., 1999; Rojas and Steihaug, 2002], finding the optimal
regularization parameters by standard techniques (e.g., the
L-curve method) would still be very time consuming and
would only be advantageous in situations where spatial-domain
methods offer a clear advantage over Fourier methods.
[100] Last, we applied our technique to identify the distribu-

tion of high-coercivity grains in the eucrite ALHA81001.
To this end, we imparted a strong-field IRM to the thin sec-
tion and subsequently applied an alternating-field demagne-
tization step of 50 mT to remove the contribution of low-
and medium-coercivity grains. The z component of the
magnetic field was mapped at a liftoff distance of 190 mm
(Figure 14A), and we performed an inversion of the field
map using split regularization (Figure 14D). Figure 14B
shows a crossed-polars transmitted-light photograph of the

thin section revealing detailed textural patterns. On this
image, we superimposed the reconstructed distribution to
show the strong correlation between high-coercivity grains
and textural features. In particular, fine-grained assemblages
of plagioclase and silica glass together with accessory ilmenite
and troilite (dark regions in Figures 14B) consistently correlate
with areas of strong magnetization, whereas larger pyroxene
lathes (seen as brighter regions in Figure 14B) are much less
magnetized. To better visualize those distinct regions, we
show in Figures 14E and 14F detailed views of the bottom
left sections of Figures 14B and 14C, respectively. Red
arrows indicate examples of regions containing such
fine-grained assemblages that clearly correlate with places
where the magnetization distribution is strong.
[101] This magnetization distribution is consistent with

our expectation that the primary ferromagnetic minerals in
ALHA81001, sulfides and metal, should be concentrated
in the late stage melt [Fu et al., 2012]. If the ferromagnetic
minerals in ALHA81001 had instead been mostly
weathering products produced on Earth during the meteorite’s
residence in Antarctica, we might expect them to be more
homogenously distributed throughout the meteorite. In that
case, a general brown stain would be visible at scales
>1mm, as new ferromagnetic minerals like goethite,
magnetite and hematite would fill cracks and holes that
permeate the surrounding silicate phases [Al-Kathiri et al.,
2005; Weiss et al., 2010]. Therefore, SQUID microscopy
provides important evidence supporting the possibility that
this meteorite could retain a record of an ancient magnetic
field on its parent body. We show elsewhere [Fu et al.,
2012] that such assemblages in ALHA81001 in fact have
retained a record of the crustal magnetic field in the asteroid
4 Vesta at about 3.69 billion years ago, which was likely
produced by an earlier dynamo. This application clearly
demonstrates how scanning magnetic microscopy can provide
invaluable information that is complementary to traditional
paleo- and rock magnetic techniques on bulk samples.

4. Conclusion

[102] We used simulated magnetizations, synthetic sam-
ples, and actual thin sections of representative terrestrial
and extraterrestrial rocks to illustrate the performance of our
technique. We have demonstrated that high-quality inversions
can be obtained even when recovering discontinuous
distributions and magnetizations corrupted by additive noise.
We summarize below the key aspects of our technique:
[103] 1. Inversion of unidirectional magnetizations with

compact support is unique, since all unidirectional silent
sources have infinite extent.
[104] 2. Recovering fully in-plane unidirectional magneti-

zations often requires additional regularization to filter out
ridge-like silent sources, since the formulation of the
inverse problem in the Fourier domain implicitly assumes
that magnetization distributions may have infinite extent.
[105] 3. Wiener deconvolution implements a trade-off

between high-pass filtering (inverse filtering) and low-pass
filtering (noise smoothing) based on the SNR at each
spatial frequency.
[106] 4. Split regularization decouples regularization of the

downward continuation operator from the regularization for
the inverse directional derivative operator.
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[107] 5. In both approaches, regularization parameters are
adjusted heuristically to provide a compromise between high
spatial resolution and occurrence of visible artifacts in
the solution.
[108] 6. Accuracy in the inversion is limited by: (i) levels of

noise contamination in the magnetic field data; (ii) size of the
mapping area; and (iii) ratio between scanning step size and
liftoff (i.e., maximum spatial frequency for which the
deconvolution is computed).
[109] 7. Additional signal processing may be necessary to

improve nonnegativity and to curb artifacts in the solution
caused by finite mapping areas.
[110] 8. When not known a priori, the magnetization

direction can be estimated by solving the inverse problem
repeatedly for different assumed magnetization directions
while minimizing the incidence of source elements with
negative intensity.
[111] The novel contributions of this work include:
[112] 1. Efficient regularization methods combining various

signal processing techniques to achieve fast and accurate
inversions with superior spatial resolution while avoiding
the occurrence of artifacts in the solutions.
[113] 2. Original regularization method of the downward

continuation operator by the use of a special scaling function
(split regularization).
[114] 3. Characterization of all magnetically silent

sources affecting the inversion of unidirectional planar
magnetization distributions.
[115] 4. Demonstration that the out-of-plane magnetic field

component provides the best data for inversions in scanning
magnetic microscopy.
[116] 5. Comprehensive analysis of numerous factors

negatively impacting inversion quality—such as mapping area
size and discretization of the inverse problem—and description
of techniques to mitigate their effects on the solution.
[117] 6. Quantification of the recovery error and its spatial

distribution under various conditions for the inverse problem
in scanning magnetic microscopy.
[118] 7. High-resolution images of the spatial distribution

of high coercivity grains in a thin section of the meteorite
ALHA81001 and correlation with petrographic data.

Appendix A: Discretization and Mapping
Area Effects

[119] Discretization of the inverse problem plays a key role
in the quality of the magnetization estimates. Although
amplitude discretization issues (e.g., quantization noise) can
be made virtually negligible by today’s ubiquitous 16 bit
digital acquisition cards with amplitude range selection,
several other factors may contribute to the degradation of
the solution. Here, we will discuss strategies to mitigate
two key problems that result from practical constraints on
instrumentation: (i) the spatial resolution of field measurements
is limited and (ii) the field is only measured on a small
fraction of the infinite horizontal plane. The problem is that
equations (2)–(4) implicitly assume knowledge of a component
of the magnetic field with infinite spatial resolution over
the whole plane z = h. As a result, position discretization
and map cropping introduce a series of artifacts and
limitations that may significantly impact the reconstruction
of magnetization distributions.

[120] Sampling in space of magnetic fields for
constructing maps is perhaps the most evident issue.
Constant step sizes are often used in the measurement of
magnetic field maps, which corresponds to using fixed spatial
sampling frequencies. Step sizes in the x and y directions
should preferably be identical, so as to avoid directional dis-
crepancies in spatial resolution. (In this article, we assume
gridding/resampling algorithms may always be utilized to
achieve consistent sampling should instrumentation partic-
ularities preclude the use of identical step sizes in both hor-
izontal directions.) Here, the Nyquist sampling theorem
plays a key role, but in an oblique way: whereas one field
component (often the vertical component) is usually the
quantity mapped, for inversion purposes, the step size
should be fine enough to correctly sample the underlying
magnetization distribution—what we wish to recover—which
is essentially unknown. Since field maps are in effect low-
pass filtered versions of their corresponding magnetization
distributions, owing to the exponential decay nature of the
upward continuation operator, proper sampling of the field
does not necessarily guarantee adequate sampling of the
magnetization. Moreover, geological samples have finite di-
mensions, and, consequently, the Fourier transform of the
magnetization distribution is not strictly band limited. This
means a certain degree of aliasing will always occur when
discretizing the magnetization. Nevertheless, given that physi-
cal magnetization distributions do not usually contain sharp
boundaries, the magnitude of the transform decays fairly
rapidly with frequency, and the spectrum may be considered
band limited for practical purposes. If the discretized field
map is free of aliasing, we can safely upsample it by
means of interpolation/filtering algorithms so as to achieve
the step size required for adequate sampling of the
underlying magnetization. However, owing to noise
contamination and other imperfections that might be present
in experimental maps, it is sometimes beneficial to work with
smaller step sizes from the start by measuring an oversampled
field map.
[121] Sampling of the magnetization in space corresponds

to replacing the continuous distribution with an array of
magnetic dipoles spaced by a distance equal to the step size.
Because sampling is mathematically equivalent to multiplying
a continuous function by an impulse train (Dirac comb),
integral equation (1) is replaced with a double sum of
magnetic dipoles. This means that we are not approximating
a continuous distribution by a piecewise constant one
(zero-order hold) comprised of small uniformly magnetized
rectangles. Instead, we are replacing it with a distribution of
point sources, which is a coarser approximation, particularly
for liftoffs that are less than several times the dimensions
of the discretization element. While using smaller step sizes
decreases the dipole approximation error, it leads concomitantly
to the magnification of artifacts in the spectrum. Consequently,
there is a trade-off between accuracy in the model and
undulations in the solution. This point will be made clearer
in the discussion that follows.
[122] The other main factor that leads to degradation of

recovered magnetizations is finite mapping areas. In this
case, the problem stems from convolutions of the source
distribution with the Green’s functions in equation (5).
Even if a magnetization distribution has finite dimensions
(compact support), its associated magnetic field will
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extend to infinity owing to those convolution operations.
As a result, we will only have access to a fraction of the
real field map in view of the impracticality of mapping
very large areas. This problem is perhaps best understood
in the continuous domain, separate from position
discretization. A cropped field map may be regarded as
the actual infinitely supported field map multiplied by a
characteristic function (rectangular window function)
defining the mapping area:

eBz x; yð Þ ¼ Bz x; yð ÞΧ x; yð Þ; (A1)

where the characteristic function Χ(x,y) = 1 for (x,y)
lying inside the mapping area and zero otherwise. In the
Fourier domain, this product becomes a two-dimensional
convolution

ebz kx;ky
� � ¼ bz kx; ky

� � � w kx;ky
� �

; (A2)

where

w kx;ky
� � ¼ LxLy sinc kxLx=2pð Þ sinc kyLy=2p

� �
; (A3)

for a rectangular mapping area extending from (�Lx/2,� Ly/2)
to (Lx/2, Ly/2), and sinc(u) = sin(pu)/pu. (This function is
illustrated in Fig. S5)
[123] The convolution of the spatial frequency spectrum

of the true field map with sinc functions produces two main
effects: (i) broadens the spectrum, and (ii) creates undulations
in the spectrum. Effect (i) forces the spectrum of a cropped
field map to extend to infinity, whereas effect (ii) is caused
by the oscillations associated with the product of sine
functions in (A3). Even if mapping areas were not rectangular,
oscillations in the spectrum would still be present [e.g., the
product of Bessel functions (jinc functions) for circular
mapping areas]. These oscillations are further amplified by
the downward continuation operator at high frequencies,
as well as by the inverse directional derivative operator near
the regions of the spatial frequency plane listed in Table 1.
[124] It is important to realize that such an excessive

amplification takes place even for ideal noiseless maps,
and that regularization has to be adjusted to cope with this
effect. The manifestation of (ii) on the inverse solution
usually consists of high-frequency ripples that may easily
dominate the solution. Manually increasing the regularization
amount tames the ripples at the expense of decreasing
spatial resolution. One useful trick to minimize this type
of artifact comprises premultiplying the field map by a
two-dimensional window function that is not the rectangular
one (boxcar) and possesses better spectral characteristics, such
as reduced sidelobes [Marple, 1987]. While the rectangular
window function has the narrowest main lobe of all windows,
its sidelobes are noticeably pronounced, which leads to the
aforementioned undulations in the spectrum. On the other
hand, windows that begin to taper off too quickly, like the
Gaussian window, have a tendency to produce solutions
that exhibit a similarly tapered appearance, thus negatively
impacting accuracy away from the central region of the
magnetization distribution.
[125] We have found that the Tukey window exhibited

superior performance compared to these other choices, in
part due to its tuning capability by means of a normalized

parameter, a. This allows for a good compromise between
accuracy away from the center (a= 0, rectangular window)
and undulation reduction (a= 1, Hann window). We
designate this operation “prewindowing,” as it corresponds
to the application of a window in the spatial domain prior to
calculating the inversion. Clearly, increasing the mapping
area is always beneficial, as it compresses the sinc functions
in (A3) and narrows the mainlobe of the window, with
similar effects in other window functions. Therefore, it is
always a good practice to map the field well past the
sample’s boundaries whenever feasible.
[126] It is also important to highlight the connection

between step sizes used in the field maps and ripples in the
inversions. The step size determines the maximum spatial
frequency calculated by the discrete Fourier transform
(DFT) and, therefore, the region where equation (33) is
computed. In essence, the smaller the step size, the larger
the region in the spatial frequency plane where the
deconvolution is computed (i.e., higher spatial resolution)
and the more amplification of both noise and spectral
undulations takes place. In particular, the ratio between step
size and liftoff is a critical parameter that determines the
trade-off between noise magnification and spatial resolution.

Appendix B: Experimental Errors and
Accuracy Issues

[127] In addition to discretization, other sources of errors
and inaccuracies play a significant role in the overall quality
of the solutions to the inverse problem obtained in practice.
We discuss below the most relevant ones.
B1. DFT, Spectral Sampling, and Linear Convolutions
[128] The DFT (in particular, its fast-algorithm implementa-

tion—FFT) is often utilized to approximate continuous
Fourier transforms in computers. A key point is the proper uti-
lization of zero padding to ensure that linear convolutions are
calculated instead of circular convolutions when multiplying
DFTs. For a discretized map with N1�N2 points, zero padding
must be introduced so as to expand the map to, at least,
(2N1� 1)� (2N2� 1) points (assuming the inverse filter is
discretized such that it also hasN1�N2 points). Additional zero
padding may be beneficial to improve accuracy by virtue of
finer sampling of the continuous spectrum, particularly for
small maps (less than 100� 100 points).
[129] A second issue is that, despite dealing with finitely

supported sequences, the DFT implicitly operates on
infinitely supported sequences. This stems from the periodic
extension of sequences utilized in the definition of the
discrete transform. As a consequence, inversions may
exhibit ridge-like artifacts associated with infinite-support
magnetizations, such as the ones listed in Table 1.
[130] Last, care should be taken when computing the

regularized inverse filter [e.g., equation (36)] so as to ensure it
is sampled in frequency the same way the specific DFT/FFT
algorithm used in the implementation of the inversion sam-
ples the continuous spectrum.
B2. Recovering the Uniform Magnetization Component
[131] As mentioned in section 2, the uniform component

(mean value) of the magnetization distribution cannot be
recovered directly from field maps. This is a direct consequence
of the condition k=0 for breakdown of equations (23)–(25).
However, if the field maps utilized in the inversion extend
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past the sample’s boundaries, it is still possible to recover
this number accurately. Given that each source element in
the Fourier formulation shares the same horizontal coordinates
with a corresponding point in the field map, the source model
is automatically extended past the sample as well. Therefore,
because the magnetization is zero outside the sample’s
boundaries by definition, the uniform component is equal
to the constant that should be added to the source model
so as to bring the magnetization to zero outside of the
sample region. Clearly, this constant automatically adjusts
the magnetization within the sample, thus yielding the
correct values.
B3. Nonnegativity and Ringing
[132] Residual ringing in the solution that might still be

present after the prewindowing processing may often be
tamed—and nonnegativity improved—by multiplying the
spectrum of the solution by a suitable two-dimensional win-
dow function, before taking the inverse Fourier transform.
This “postwindowing” procedure is equivalent to low-pass
filtering the solution with a smooth spatial frequency response
given by the window function. Notice that this windowing
operation is performed in the frequency domain, whereas
the prewindowing operation mentioned in Appendix A to
decrease undulations in the spectrum is carried out in the
spatial domain. Consequently, their effects on the solution
are quite different. The main advantage of utilizing window
functions instead of conventional digital filters is the better
control over ringing, considering that sharp selectivity is
not required nor desired. Postwindowing gradually tapers
off the spectrum so as to make it zero at the edges of the
region in the spatial frequency plane where the DFT is
computed. It is advantageous to parameterize the window
function in order to stretch or shrink its spatial frequency
response, thus controlling the passband of the filter.
Postwindowing can be regarded as the two-dimensional
convolution in the spatial domain between the inverse
solution and the inverse Fourier transform of the window
function. Typically, the Hann window yields a good com-
promise between spatial resolution and ringing reduction.
B4. Imprecision in Sensor-to-Sample Distance and
Magnetization Direction
[133] In this section, we analyze the effects on the solution

of using incorrect liftoffs and magnetization directions.
Uncertainties in the estimation of these two parameters due
to experimental error or lack of a priori information may
negatively impact the quality of the inversions.
Recognizing the nature of artifacts that might eventually be
present in the solution to the inverse problem is key to
distinguishing between the sources of inaccuracy.
[134] Typically, the liftoff is estimated from scans of

known sources of magnetic field (e.g., current-carrying
thin-film wires [Baudenbacher et al., 2002; Lee et al.,
1996]) or by using a micropositioner [Hankard et al.,
2009]. In the first method, the magnetic field is measured
along a line perpendicular to the wire, and the experimental
data are used to determine several parameters of a model,
one of which is the sample-sensor separation. Clearly, this
method requires a setup where samples can be swapped
without changing the liftoff, so that the wire scan is
representative of the distance used in the mapping of actual
samples. In the second method—which is only suitable for
sensors operating at room temperature—a micropositioner

controls the separation by displacing vertically either the
sensor or the sample. Here, the sensor first touches the
surface of the specimen, establishing a reference point,
which corresponds to the smallest possible separation.
Next, the liftoff is adjusted and measured by means of the
micropositioner so as to provide a gap large enough to
safely scan the sample without scratching it or damaging
the sensor tip. Note that, in this case, the distance from the
sample to the sensing element is not directly measured,
and the location of the sensing element relative to the sensor
tip must be determined by a different method. However,
given that this distance is fixed for a particular sensor, it
only has to be measured once and later added to the
liftoff measurements.
[135] Regardless of the method chosen to measure the

liftoff, there is always an error associated with these
estimates. Suppose the sensor is positioned at a height h
above the sample, but the inversion is calculated for an
estimated liftoff of h0 = h +Δh, where Δh can be positive
(overestimation of the liftoff) or negative (underestimation).
In this case, the calculated solution will be a filtered version
of the true magnetization distribution. If Δh> 0, the spectrum
experiences an exponential frequency boost. Conversely, an
exponential frequency cut takes place when Δh< 0. This can
be easily understood by realizing that the liftoff directly affects
the downward continuation operator. Specifically, from
equations (25) and (33), we have that

m
0
kx; ky
� � ¼ eΔh km kx;ky

� �
: (B1)

[136] Thus, the magnitude of m0 increases for Δh> 0
and decreases for Δh< 0, as eΔhk ≥ 1 for Δh positive
and 0< eΔhk ≤ 1 for Δh negative. Overestimated liftoffs
yield solutions that are excessively sharp and may contain
high-frequency oscillations. Underestimated liftoffs, on
the other hand, smooth the solution and decrease the spatial
resolution. For small deviations from the nominal liftoff, it
might be hard to perceive such effects, but they are fairly
obvious for medium to large Δh or very small scanning step
sizes (due to an increase in the maximum frequency for
which the exponential term is calculated).
[137] The effect of using an incorrect direction to recover

a unidirectional magnetization is somewhat harder to

quantify. Let
!
K denote an element in C3 (i.e., the vector space

comprised of all vectors with three complex components) of the
form (ikx, iky,�k). If û ¼ siny cos’; siny sin’; cosyð Þ and v̂
¼ sina cosb; sina sinb; cosað Þ—which are also elements in
C3, as R3⊂C3—represent the true magnetization direction
and the estimated direction, respectively, we may rewrite
equations (25) and (33) as

bz kx; ky
� � ¼ � m0

2
e�hk !

K �û
h i

m kx;ky
� �

; (B2)

m
0
kx;ky
� � ¼ � 2

m0
ehk

!
K �v̂
h i�1

bz kx;ky
� �

; (B3)

for
!
K �v̂ 6¼ 0 . (m0(kx,ky) is undetermined whenever

!
K is

orthogonal to v̂ , as discussed in section 2—see Table 1.
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Notice that while û and v̂ are fixed,
!
K changes as kx and ky

vary.) Substituting equation (B2) in equation (B3), we get

m
0
kx; ky
� � ¼ !

K �û
!
K �v̂

m kx; ky
� �

; (B4)

for
!
K �v̂ 6¼ 0. Finally, using the identity û ¼ v̂ þ û � v̂ð Þ, we

have that

m
0
kx; ky
� � ¼ 1þ

!
K � û � v̂ð Þ

!
K �v̂

" #
m kx;ky
� �

; (B5)

for
!
K �v̂ 6¼ 0. If v̂ does not lie in the horizontal plane,

!
K is

never orthogonal to v̂ , and the difference between recovered
and true spectra is given by

e kx;ky
� � ¼ m

0
kx;ky
� �� m kx;ky

� �
¼

!
K � û � v̂ð Þ

!
K �v̂

m kx; ky
� �

; if kx 6¼ 0 or ky 6¼ 0

�m 0; 0ð Þ ; otherwise:

8><>: (B6)

[138] The difference at
!
K ¼ !

0 (the origin of spatial fre-
quency plane) can be made negligible, given that the uniform
component may be recovered by other means (see previous
discussion in Appendix B.2). However, the only way to con-
sistently decrease e(kx,ky) at all spatial frequencies (e.g., to
minimize its norm) is making v̂ as close to û as possible.
[139] In particular, it is possible to establish bounds for

the recovery error. Since
!
K � û � v̂ð Þ
��� ���≤k û � v̂j j and !

K �v̂
��� ���

≥ k vzj j, we have (assuming vz 6¼ 0)

e kx; ky
� ��� ��2≤ û � v̂j j2

v2z
m kx; ky
� ��� ��2: (B7)

[140] Using Parseval’s theorem (twice), we obtain the
following upper bound for the squared error (cf. Lemma
4.2 of Baratchart et al. [2013]):

∬
R2

E x; yð Þj j2dxdy ≤ û � v̂j j2
v2z

∬
R2

m kx;ky
� ��� ��2dxdy: (B8)

B5. Effects of Nonunidirectionality of the
Actual Magnetization
[141] Equations (B2) and (B3) may also be utilized to

show what happens when the real magnetization is not purely
unidirectional. Let us assume the sample is magnetized in two

distinct directions û1 and û2, such that
!
M x; yð Þ ¼ M 1 x; yð Þû1

þM 2 x; yð Þû2 . This bidirectional model may represent, for
instance, overprints associated with viscous remanent mag-
netization, partial reheating, and IRM due to proximity to
hand magnets.
[142] In this case, equation (B2) becomes

bz kx;ky
� � ¼ � m0

2
e�hk f !

K �û1
h i

m1 kx;ky
� �

þ !
K �û2
h i

m2 kx;ky
� �g; (B9)

where m1 and m2 are the magnetization distributions oriented
along directions û1 and û2, respectively.
[143] If we invert the field map in the direction û1 [i.e.,

making v̂ ¼ û1 in equation (B3)], we get

m
0
kx; ky
� � ¼ m1 kx;ky

� �þ!
K �û2!
K �û1

m2 kx; ky
� �

; (B10)

for
!
K �û1 6¼ 0.

[144] [Notice the similarity between equations (B10) and
(B5). In this case, for a magnetization off the horizontal
plane, the discrepancy between the magnetization estimate
and the unidirectional distribution due to the overprint is
given by

e kx;ky
� � ¼ m

0
kx; ky
� �� m1 kx;ky

� �
¼

!
K �û2!
K �û1

m2 kx; ky
� �

; if kx 6¼ 0 or ky 6¼ 0

�m1 0; 0ð Þ ; otherwise:

8><>: (B11)

[145] The only way to consistently decrease the error in the
recovery consists of making m2 as small as possible.
[146] It is worthwhile noticing that equation (B10) shows a

key distinction between spatial-domain inversion techniques
based on residual minimization and our technique: in the
Fourier domain, one of the components of a multidirectional
magnetization may be directly recovered provided there is
enough spatial separation between the supports of the com-
ponents. Even when the supports overlap, useful information
may still be retrieved, as the error tends to be concentrated on
and around the support of the components reconstructed
using incorrect directions.
B6. Finite Sensor Area
[147] In practice, magnetic sensors do not measure the field

at a point, but detect instead some form of average of the field
over the sensing area (e.g., planar integrated sensing element)
or sensing volume (e.g., discrete sensing element), as

Figure B1. Diagram illustrating the composition of two inverse problems when considering sensor
effective area/volume effects. A secondary inverse problem (Φ-B deconvolution) must be solved prior
to the primary inverse problem for determining planar magnetization distributions from field maps
(B-M deconvolution).
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determined by the particular sensor design. We will restrict
our analysis to planar sensors oriented parallel to the sample,
which is a configuration widely used in scanning magnetic
microscopes. However, sensor modeling may be easily
extended to incorporate other orientations and configurations,
such as gradiometers and discrete sensors that integrate the
field over a volume [Lima et al., 2002].
[148] Depending on the orientation of the device and on

the liftoff relative to the size of the sensing area and to the
sensor thickness, such integration effects may be neglected
because the magnetic field is approximately constant within
the sensing area/volume. However, in scanning magnetic
microscopy, sensors are often brought in very close proxim-
ity to samples, and it is not unusual for the liftoff to be
smaller than the dimensions of the sensing element, particu-
larly for noncryogenic sensors. In this case, detailed model-
ing of the quantity effectively measured by the sensor is
required for accurate inversions. A particularly pernicious
effect is the integration along the direction normal to the
sample (the z direction in our model), given that it leads to
a substantial decrease in spatial resolution.
[149] To illustrate how such effects could be modeled, we

assume that the sensor detects the magnetic flux threaded
through a planar sensing area parallel to the sample. That is,

Φ !
r

� � ¼ ZZ
A

!
B

!
r

� �
�n̂d!r ¼

ZZ
A

Bz x; y; hð Þdxdy; (B12)

where A is the effective area of the sensor. This flux integral can
be converted into a two-dimensional convolution by defining a
suitable functionW representing the effective area of the sensor

Φ x; yð Þ ¼
Zþ1

�1

Zþ1

�1
W �; xð ÞBz x� �; y� xð Þd�dx; (B13)

where we have again omitted the dependence on the liftoff h.

If, for example, the effective area is equivalent to a circular coil
with N turns and radius a, the turns function W is given by

W x; yð Þ ¼ N ; if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
≤ a

0 ; otherwise;

(
(B14)

and its two-dimensional Fourier transform is

w kx;ky
� � ¼ 2pNa2 jinc akð Þ; (B15)

where jinc(u) = J 1(u)/u and J 1 is the Bessel function of the
first kind and first order.
[150] Although the sensor, in practice, measures magnetic

flux instead of magnetic field, we can still retrieve the field
map by first solving a flux-to-field ancillary inverse problem
[i.e., inverting equation (B13)] by means of pseudo-inverse
filters or Wiener deconvolution. The inverted data are then
fed to the inverse problem for the magnetization given by
equation (1), as illustrated in Figure B1. Clearly, regulariza-
tion of this flux-field deconvolution is critical, since the
Fourier transform of W has an infinite number of zeros (see
Fig. S6). Consequently, the deconvolution is sensitive to
some of the issues previously discussed. Whereas lumping
together the two inverse problems is possible in principle
through adjustment the Green’s function, a great degree of
control over the regularization could be lost, as a single set
of regularization parameters must be chosen to handle all
singularities. A better approach consists of separating the
two inverse problems and their regularizations. Evidently, it
is not necessary to compute the inverse Fourier transform at
the end of the secondary inverse problem, given that it would
introduce numerical error.

Table C1. Regularization Parameters for the Inversion Examples Shown in Section 3

Figure Reg. Pre Wnd. Post Wnd. r or k0 g or x g0 NRMSD

6c Split Tukey - 0.5 Hann - 0.75 0.28 0.1 1.0� 10�21 0.109
6e Wiener Tukey - 0.5 – 200 1.0� 10�21 – 0.099
6g Wiener – – 200 1.0� 10�21 – –
6h Wiener Tukey - 0.5 – 200 1.0� 10�16 – 0.161
7c Wiener Tukey - 0.5 – 10 2.0� 10�20 – 0.053
8c Wiener Tukey - 0.5 – 6.5 3.0� 10�19 – 0.217
8g Wiener Tukey - 0.5 – 6.5 1.0� 10�19 – 0.152
9d Split Tukey - 0.7 – 0.30 0.1 8.0� 10�24 0.295
9e Split Tukey - 0.5 – 0.26 0.9 8.0� 10�15 0.125
9g Split Tukey - 0.6 – 0.32 0.1 1.0� 10�21 0.358
9h Split Tukey - 0.5 – 0.20 0.9 5.0� 10�10 0.143
10d Wiener Tukey - 0.5 – 1.0 1.0� 10�17 – –
10f Wiener – – 1.0 1.0� 10�25 – –
10h Wiener Tukey - 0.5 – 1.0 1.0� 10�22 – –
11c Split – Hann - 0.3 0.25 1 1.0� 10�18 –
12c Split – – 0.25 0.9 1.0� 10�7 –
12d Split – – 0.21 0.5 5.0� 10�13

13e Wiener – Hann - 0.4 6000 5.0� 10�20 – –
13f Wiener – Hann - 0.4 6000 1.0� 10�20 –
14d Split – – 0.12 1.0 1.0� 10�18 –
S2c Wiener Tukey - 0.5 – 10 1.0� 10�20 0.175
S3c Wiener Tukey - 0.5 – 6.5 1.0� 10�19 0.098
S4c Wiener Tukey - 0.5 Hann - 0.7 30 4.0� 10�16 0.893
S4g Wiener Tukey - 0.5 Hann - 0.4 305 4.0� 10�16 0.268
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Appendix C: Regularization Parameters Used in
the Examples

[151] We list in Table C1 the specific regularization
parameters used in each of the inversions shown in section 3
. We also show which regularization method was used and
the corresponding NRMSD obtained (when applicable), in ad-
dition to the prewindowing and postwindowing parameters.
For the Wiener deconvolution, the regularization parameters
are r and g [see equation (40)], whereas for the split regulari-
zation method, the parameters are k0 and x for the downward
continuation operator [see equation (43)], and g0 for the inverse
directional derivative operator [see equation (44)] (note that
we use a prime symbol to distinguish this parameter from the
one used in the Wiener deconvolution). We remark that such
numbers should not be interpreted as absolute parameter
values and that they may change significantly when using dif-
ferent samples, experimental setups, sensor technologies, step
sizes, sensor-to-sample distances, and mapping areas.
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