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Abstract Useful paleomagnetic information is expected to be recorded by samples with moments up to
three orders of magnitude below the detection limit of standard superconducting rock magnetometers.
Such samples are now detectable using recently developed magnetic microscopes, which map the magnet-
ic fields above room-temperature samples with unprecedented spatial resolutions and field sensitivities.
However, realizing this potential requires the development of techniques for retrieving sample moments
from magnetic microscopy data. With this goal, we developed a technique for uniquely obtaining the net
magnetic moment of geological samples from magnetic microscopy maps of unresolved or nearly unre-
solved magnetization. This technique is particularly powerful for analyzing small, weakly magnetized samples
such as meteoritic chondrules and terrestrial silicate crystals like zircons. We validated this technique by apply-
ing it to field maps generated from synthetic sources and also to field maps measured using a superconduct-
ing quantum interference device (SQUID) microscope above geological samples with moments down to
10215 Am2. For the most magnetic rock samples, the net moments estimated from the SQUID microscope
data are within error of independent moment measurements acquired using lower sensitivity standard rock
magnetometers. In addition to its superior moment sensitivity, SQUID microscope net moment magnetometry
also enables the identification and isolation of magnetic contamination and background sources, which is crit-
ical for improving accuracy in paleomagnetic studies of weakly magnetic samples.

1. Introduction

Until recently, the most sensitive magnetometers in the geosciences (i.e., the 2G Enterprises 755 Supercon-
ducting Rock Magnetometer (SRM)) were capable of measuring natural remanent magnetization (NRM)
down to a limiting resolution of �1 3 10212 Am2. In practice, background variations in the moment of sam-
ple holders will limit this to 1 3 1028 Am2 or even higher unless special precautions are taken to use non-
magnetic materials [Kirschvink et al., 2015]. However, it has long been recognized that geological samples
should be able to provide useful paleomagnetic records for moments at least several orders of magnitude
below this threshold [Kirschvink, 1981]. These limitations in instrument sensitivity have been until recently
the main factor determining the samples with the weakest magnetic moments that have been used for
paleomagnetic measurements. For example, standard-sized (cm-scale) samples of lithologies with weak
magnetizations (�1023 Am21) like carbonates and lunar basalts, as well as smaller (�0.1 mm) samples of
geological materials like single silicate crystals [Sato et al., 2015; Tarduno et al., 2015; R. R. Fu et al., Evaluating
the paleomagnetic potential of single zircon crystals using the Bishop Tuff, preprint, arXiv:1605.08479, 2016]
and chondrules [Fu et al., 2014; Lappe et al., 2013; Lappe et al., 2011; Uehara and Nakamura, 2006] can have
moments several orders of magnitude below 10212 Am2, particularly after laboratory demagnetization.

There have been several recent technological developments that currently or will soon enable higher sensi-
tivity measurements. The recently developed small-bore 2G SRM has enabled measurements of moments
down to �2 3 10213 Am2 (D. Schuler, personal communication, 2016). Furthermore, ongoing efforts to
develop a more sensitive bulk moment magnetometer using spin exchange relaxation free technology may
lead to further improvements in sensitivity by 2 – 3 orders of magnitude for 1 cm3 samples compared to
the 2G SRM [Dang et al., 2010].

Here we focus on another new ultra-high sensitivity technique for measuring the magnetic field above
room temperature samples called superconducting quantum interference device (SQUID) microscopy (SM)
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that has continuously developed over the last two decades [Fong et al., 2005; Weiss et al., 2007b]. By
employing small (typically <100 lm) pickup loops brought extremely close to the samples, these instru-
ments are capable of mapping the vertical component of the sample magnetic field with resolutions as low
as 10 pT at spatial resolutions of 150 lm or better. Because the three components of the magnetic field
measured in source-free space are interrelated by Gauss’s Law and Ampère’s Law, the two transverse field
components can be uniquely calculated with high accuracy from these data, yielding the full vector field in
a plane above the sample [Lima and Weiss, 2009].

The main application of this technique has been to infer the fine-scale magnetization distribution within
geological samples [Fu et al., 2012b; Gattacceca et al., 2006; Lima et al., 2013; Oda et al., 2011; Weiss et al.,
2007a]. However, recovering magnetization distributions from field data is generally nonunique [Baratchart
et al., 2013; Weiss et al., 2007b]. By comparison, magnetic field maps of a spatially unresolved (i.e., purely
dipolar) sample can be used to uniquely retrieve the net magnetic moment of the source [Lima et al., 2006;
Weiss et al., 2007b]. Our initial demonstrations of this approach have already established that moments as
weak as 10213 to 10214 Am2 can be retrieved, with the moments of relatively strongly magnetized samples
obtained from SQUID microscopy and standard SQUID rock magnetometry in agreement [Weiss et al.,
2007b, 2008]. Furthermore, we recently successfully applied this technique as part of a comprehensive
study of chondrules isolated from primitive chondritic meteorites that provided the first reliable paleointen-
sities of fields in the solar nebula [Fu et al., 2014], and to zircons from Bishop Tuff that provided accurate
paleointensity measurements of the recent geomagnetic field (R. R. Fu et al., Evaluating the paleomagnetic
potential of single zircon crystals using the Bishop Tuff, preprint, arXiv:1605.08479, 2016).

Here we present the first comprehensive demonstration of the accuracy and utility of this technique, its
computational methodology and limitations, and its application to a typical paleomagnetic measurement
suite involving progressive demagnetization. We begin in section 2 by demonstrating that samples with
moments at least 100 times weaker than those detectable with standard SQUID rock magnetometers con-
tain paleomagnetically meaningful information. Having demonstrated why we are developing the moment
magnetometry technique for ultrasensitive instruments like SQUID microscopes, we describe the technique
in section 3. Then, in section 4, we characterize its performance by applying it to controlled magnetization
distributions for synthetic samples. We then validate the technique in section 5 using natural samples and
comparison to measurements from standard rock magnetometers. We conclude that section with applica-
tion of the technique to the measurement of samples that are inaccessible to standard rock magneto-
meters, demonstrating the detection of moments as weak as 1 3 10215 Am2.

2. The Need for Ultra-High Sensitivity Moment Magnetometry

We begin by using a simple analysis to demonstrate that there should be paleomagnetically meaningful infor-
mation carried by ferromagnetic grain assemblages with moments well below 10212 Am2. In particular, we esti-
mate the smallest magnetic moment for a grain assemblage that would accurately constrain the paleointensity
or the paleodirection of an ancient magnetizing field B. The error in the recorded paleodirection is defined as
the angle between the net moment (i.e., resultant) of the assemblage and the ancient field direction. The error
in paleointensity is defined as the fractional deviation of the efficiency, e (i.e., ratio of the net moment to the
saturation moment), relative to that typically observed for large numbers of grains. We consider two different
paleofield strengths that produce e 5 0.015 and 0.15, which empirically are observed for typical grain assemb-
lages carrying a thermoremanence acquired in fields B of 50 and 500 mT, respectively [Yu, 2010].

We consider an assemblage of identical single domain magnetite crystals with uniaxial anisotropy and
spontaneous magnetic moments Ms with orientations distributed uniformly across the surface of the unit
sphere. An extreme lower limit on the weakest most useful magnetic moment is set by the spontaneous
moment of one spherical single domain grain with radius just above the superparamagnetic threshold
(�25 nm) [Butler and Banerjee, 1975], for which m � 3 3 10217 Am2. Because this grain can be magnetized
only in two directions and always has the same spontaneous moment intensity, it can record paleofield
directions with errors up to 908 and essentially cannot record paleointensities.

To obtain a more meaningful lower limit, we use a Monte Carlo simulation to estimate the minimum num-
ber of grains, nmin, that must be measured to achieve on average an angular error of he 5 108 in the paleo-
field direction B̂ and an error in the paleofield intensity of me 5 20%. We can see that for this uniform
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angular distribution of grain axes, 0< e< 0.5. We draw n grains at random from this population and calcu-
late their resultant,~R , for n ranging from 1 to 108. We then compare the direction and magnitude of~R(n)/n
to that~R(1)/15 eB̂ and compute the directional error:

ue5acos B̂ �~R nð Þ=n
h i

(1)

and the paleointensity error:

me512
~R nð Þ=n

e
: (2)

We then repeated each of these experiments for 10,000 trials to calculate the mean values he and me . This
number of trial repetitions was found to insure convergence of the final estimated values of he and me to
better than 1% of the true means.

For e � 0.015 and 0.15, we find that nmin 5�70,000 and 800 for he 5 108 and �25,000 and �250 for
me 5 20% (Figure 1). Therefore, these intuitively specified directional and intensity error limits yield very simi-
lar values of nmin. Given the single grain moment m above, these nmin values correspond to net moments of
�2 and 0.2 3 10214 Am2 for he 5 108 and �8 and 0.8 3 10215 Am2 for me 5 20%. An analytical study using
Langevin theory for detrital remanent magnetization carried by single domain magnetite grains by Kirschvink
[1981] estimated a minimum net moment of 6 3 10214 Am2 for grains with radii about twice those consid-
ered here and for maximum mean directional errors of 58. A recent analytical approach by Berndt et al. [2016]
of magnetite grain assemblages found that paleointensity errors exceeded 20% and paleodirectional errors
exceeded 208 for net moments of �10215210214 Am2. In summary, three very different independent analy-
ses by this study, Kirschvink [1981] and Berndt et al. [2016] have found that natural samples should preserve
paleomagnetically useful information down to natural remanent moments of 10215210214 Am2, 100–1000
times below that measurable with standard superconducting rock magnetometers.

3. Description of Net Moment Technique

Having demonstrated the need for high-sensitivity moment magnetometry, we now describe our technique in
detail. We focus on the computation of net magnetic moments from measurements of the magnetic field of
geological samples whose external field is close to that of a magnetic dipole. Dipole moments are powerful
ways to represent experimental data because (I) they are the elemental building blocks of magnetization distri-
butions; (II) magnetic fields of distant sources behave as those of single magnetic dipoles; (III) the external mag-
netic field produced by specific source geometries can be very close or even identical to that of a magnetic
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Figure 1. Paleodirectional and paleointensity errors associated with measuring the net moments of different numbers of single domain ferromagnetic grains with uniaxial easy axes distrib-
uted uniformly over the sphere. An underlying distribution of 108 grains was magnetized to an efficiency e of 1.5% or 15% in the paleofield direction (i.e., the net moment relative to the
saturation remanence when all grains are magnetized in the same hemisphere centered around the paleofield direction B̂). Then, n grains were chosen at random and their net moments
computed and compared to that expected for n!1. (a) Mean paleodirectional errors he . (b) Mean paleointensity errors me . Inset shows mean paleointensity errors for n� 104.
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dipole [Collinson, 1983; Jackson, 1999; Reitz et al., 1979]. We assume that the samples are analyzed in a zero-field
environment—for instance, inside a magnetically shielded room or container—such that no observable induced
magnetization component is present and background remanent magnetization is near zero due to the use of
low-moment sample holders. These simplifications make the moment magnetometry problem for magnetic
microscopy far more tractable than magnetic surveys of crustal magnetization [e.g., Parker, 1991].

Regarding (I), magnetization is a vector quantity that is defined as the macroscopic average of dipole
moments in a small volume element. Thus, magnetic dipoles are fundamentally connected to magnetization
distributions, which are ultimately composed of individual electron magnetic moments. As for (II), the magnet-
ic field of any source of finite size approaches asymptotically the field of a magnetic dipole as the distance
between the source and the observer (e.g., magnetic sensor) increases. Expressing the external magnetic field
of such a source as an expansion of spherical harmonics field terms shows that at large distances the dipole
term prevails over higher order multipoles [Jackson, 1999]. Owing to the orthogonality of the spherical har-
monics basis, none of the higher order terms affects the dipole moment (i.e., they all have zero magnetic
dipole moment). Interestingly, the coefficient of the dipole term in the spherical harmonics expansion corre-
sponds to the integral of the magnetization (net magnetic moment) [Jackson, 1999; Stratton, 2007]. Moreover,
the dipole moment term is invariant with respect to the origin of the spherical harmonics expansion [Epton
and Dembart, 1995; Wikswo and Swinney, 1985], which is particularly important for intricate magnetizations
distributions for which the choice of a suitable origin for the expansion may not be obvious. Finally, (III) stems
from the fact that certain symmetrical source configurations yield fields external to the magnetization distribu-
tions that are identical to (e.g., uniformly magnetized sphere) or very close to (e.g., uniformly magnetized cyl-
inder with specific aspect ratio) the field of a magnetic dipole even at somewhat small distances.

Next, we show how the magnetic moment can be recovered from magnetic field measurements for differ-
ent experimental configurations.

3.1. Recovering the Moment
The field of a magnetic dipole is given by

~Bð~rÞ5 l0

4p

3~m � ~r2~r0
� �

j~r2~r0 j5
~r2~r0
� �

2
~m

j~r2~r0 j3

8<
:

9=
;; (3)

where ~m is the magnetic moment,~r and ~r0 represent the positions of the sensor and of the dipole, respec-
tively, and ~B is the magnetic field. In the absence of noise, we only need one set of measurements of the
three components of the magnetic field of a dipolar source at a known distance [Bx (r), By (r), Bz (r)] to recov-
er the net moment:

~m5
4p
l0
j~r2~r0 j3 3

2

~Bð~rÞ � ~r2~r0
� �

j~r2~r0 j2
~r2~r0
� �

2~Bð~rÞ

8<
:

9=
;; (4)

given that for known~r2~r0 the moment ~m is completely specified by~B. [The expression above can be easily
obtained from (3) the after some manipulation making use of vector identities.]

Alternatively, instead of using a single measurement of the vector magnetic field, we can also recover the
moment from three measurements of a single component of the field taken at suitable positions (e.g., the
z-component of the magnetic field measured at three points on a horizontal plane above the source):

Bzðx1; y1; hÞ

Bzðx2; y2; hÞ

Bzðx3; y3; hÞ

2
664

3
7755

l0

4p

3x1h

x2
11y2

11h2ð Þ5=2

3y1h

x2
11y2

11h2ð Þ5=2

2h22x2
12y2

1

x2
11y2

11h2ð Þ5=2

3x2h

x2
21y2

21h2ð Þ5=2

3y2h

x2
21y2

21h2ð Þ5=2

2h22x2
22y2

2

x2
21y2

21h2ð Þ5=2

3x3h

x2
31y2

31h2
� �5=2

3y3h

x2
31y2

31h2
� �5=2

2h22x2
32y2

3

x2
31y2

31h2
� �5=2

2
66666666664

3
77777777775

mx

my

mz

2
664

3
775; (5)

where we assume that the dipole is located at the origin of the coordinate system (without loss of generali-
ty), and that the field is measured at three points on the plane z5h parallel to the sample: ðx1; y1; hÞ,

Geochemistry, Geophysics, Geosystems 10.1002/2016GC006487

LIMA AND WEISS ULTRA-SENSITIVE MOMENT MAGNETOMETRY 4



ðx2; y2; hÞ, and ðx3; y3; hÞ. Such points must be chosen so as to yield a nonsingular, invertible matrix when
solving the system of linear equations (5). This can be easily accomplished by avoiding (i) points where
Bz 5 0; (ii) three points that are greatly clustered; (iii) three points that lie on a line (e.g., x 5 y, x 5 0, y 5 0)
or on the circle of radius h

ffiffiffi
2
p

centered about the origin.

Under real experimental conditions, sensor noise will degrade the vector magnetic field measurement~B in
(4) or the three measurements of the z-component of~B in (5), thereby affecting the recovered moment by
adding a spurious component. To ameliorate this problem, an average magnetic moment estimate can be
computed using (4) for repeated measurements of ~B at the same distance from the source. In the single-
component approach, we can combine a larger number of measurements to obtain an overdetermined sys-
tem of linear equations whose approximate solution can be found via the method of least squares.

Whereas these two approaches are very straightforward due to the fact they are linear in the recovered
three components of the moment, the accuracy in recovering the moment is directly related to how well
known is the position of the sensor relative to the source. For this reason, such methods tend to perform
better when the sensor-to-sample distance is large compared to the sample size, such that small uncertain-
ties in the relative position do not noticeably impact accuracy (similarly, sensors with large sensing areas or
volumes tend to minimize the influence of position uncertainty, owing to averaging effects).

In scanning magnetic microscopy, the magnetic sensor is typically brought as close as possible to the sam-
ple in order to maximize sensitivity and achieve superior spatial resolution. Errors in assessing the relative
distance between the measurement positions and the sample location may not be negligible, particularly
because the exact location of the equivalent dipole in a given geological sample is usually not known.
Therefore, a different approach is required to accurately recover the net moment.

In essence, we generalize the least-squares method for solving the linear system (5) to account for the
uncertainty in the dipole location. Specifically, we assume a dipole that is no longer located at the origin
but at the coordinate ~r05ðx0; y0; 0Þ (we take the z-coordinate to be zero without loss of generality). Meas-
urements of the field component normal to the sample, Bz, are again taken at a plane parallel to the x–y
plane and distance h above it. We then have to find six parameters in total, three of which (spatial coordi-
nates of the dipole) exhibit a nonlinear dependence with Bz . Thus, we have transformed our linear least-
squares problem into a nonlinear one. Notice that Bz still preserves its linear dependence on the three
remaining parameters (i.e., the components of the dipole moment) such that the least-squares problem is
actually of mixed form or separable. We also consider that the magnetic field measurements are taken at
positions on an evenly spaced rectangular grid.

We draw attention to the fact that using a single component of the magnetic field to determine the mag-
netic moment does not lead to loss of information or to a decrease in accuracy. Maxwell’s equations
establish that the magnetic field in a region devoid of sources (i.e., outside the sample, where we take
measurements of the field) can be completely represented by the gradient of a scalar function satisfying
Laplace’s equation. This scalar potential means that all three field components are tightly interconnected
and that a single component essentially carries all the information about the full vector field [Lima and
Weiss, 2009]. This refutes recent unsubstantiated assertions that single-component maps do not provide
unique vector field constraints [Cottrell et al., 2016; Dare et al., 2016]. Notice that these relationships hold
for the magnetic field measured and computed on surfaces rather than in a pointwise manner. This fact
has been recognized and exploited in geophysics since as early as 1945 [Vestine and Davids, 1945], and is
extensively used in magnetic surveys from the local to the planetary scale [Blakely, 1996; Purucker, 1990,
2008].

In mathematical terms, we wish to find the parameter vector p5 x0; y0; h;mx ;my ;mz
� �T

5 x;mð ÞT , that mini-
mizes the objective (cost) function defined as the residual sum of squares between the experimental mag-
netic field data and the dipole model field computed at the same locations (the symbol T denotes the
transpose of a vector or matrix). That is to say:

minimize
x;m2R3

||bz2GðxÞm||22; (6)

where G stands for the geometry matrix, bz is the vector with the measurements of the z-component of the
magnetic field on the planar grid, and k � k2

2 denotes the Euclidean norm (2-norm) squared.
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We can use two different methods to solve (6). Case 1: a nonlinear optimization algorithm searches a six-
dimensional parameter space for the optimal parameter vector p that minimizes the residuals. Case 2: we
take advantage of the linear relationship between the magnetic field and the magnetic moment (i.e., the
separability of the nonlinear least-squares problem [Golub and Pereyra, 2003]) to split the solution into linear
and nonlinear parts. Here, a nonlinear optimization algorithm searches instead a reduced three-dimensional
space corresponding to the x parameter vector. For each iteration of the optimization algorithm, a linear
least-squares problem is solved to find the moment vector m(x) for the particular geometry matrix GðxÞ:

minimize
x 2 R3

subject to mðxÞ5G1ðxÞbz

||bz2GðxÞmðxÞ||22; (7)

where G1ðxÞ5 GðxÞT GðxÞ
� �21

GðxÞT is the pseudoinverse of GðxÞ. (That is to say, for each set of values for
x, y, and h, chosen by the optimization algorithm we solve for [mx, my, mz].)

One possible interpretation of this problem is recognizing that the components of the magnetic moment
are the coefficients in a linear combination of scalar-valued functions G1ðx; y; hÞ, G2ðx; y; hÞ, and G3ðx; y; hÞ
that best approximates the field data:

bzðx; y; hÞ5mx G1ðx2x0; y2y0; hÞ1my G2ðx2x0; y2y0; hÞ1mz G3ðx2x0; y2y0; hÞ: (8)

The advantage of the first approach is mostly shorter computational times (this is specific for the single-
dipole case), with the tradeoff that the larger search space may lead to trapping at local minima and subop-
timal solutions, particularly when the true source distribution cannot be exactly represented by a single
dipole. On the other hand, the second approach yields solutions in a smaller number of iterations (although
usually taking longer time) and is less prone to trapping at local minima.

In both cases, the optimization problem is solved multiple times using different initial guesses for the opti-
mization parameters at each time that are obtained via random perturbations of the nominal values (with
typical perturbations of 5–20% of initial guesses). The final error (residual) associated with each solution is
compared and the one with the smallest error is chosen. This procedure helps ensure that local minima are
avoided and that the solution that best approximates the experimental data is found. Usually, we compute
the optimization problem 20–100 times, obtaining final solutions within 30–60 s on a moderately fast PC
with a single Intel Quad Core i7-950 CPU and 12 GB of RAM, depending on size of the field map and how
far the nominal initial guess is from the true solution. We typically use hundreds to thousands of data points
to recover the three net moment components, resulting in a greatly overdetermined problem that increases
the robustness of the solution in the presence of higher noise levels. Clearly, the larger the number of data
points, the greater the time to complete each iteration of the optimization procedure. In general, noisy field
data require using fine-sampled field maps with a larger number of data points in the optimization so as to
achieve adequate accuracy in the moment estimates.

It is often advantageous to run the optimization algorithm a single time while observing the output of the
model during the initial iterations, particularly prior to starting to processing maps associated with demag-
netization or remagnetization sequences of a sample. This allows us to manually adjust the initial guess for
the optimization parameters so that they are not very far off from the true configuration of the experiment,
speeding up the overall optimization procedure and helping ensure convergence. For instance, good esti-
mates for the horizontal coordinates ðx0; y0Þ of the dipole can be directly obtained from the location with
maximum field strength in the total field map computed from the measured normal field component map.
Estimates for the distance between the measurement plane and the sources (also called liftoff distance or
sensor-to-sample distance), h, can be obtained by measuring standard samples such as thin current-
carrying wires and small magnetized dots, or even by optical measurements depending on the type of
magnetometer used [Baudenbacher et al., 2002; Hankard et al., 2009; Lima et al., 2014].

When solving the six-parameter optimization problem (Case 1), estimates for the moment components can
be more easily obtained in spherical coordinates—moment strength, inclination, and declination—and
then converted back to rectangular coordinates. Inclination can be roughly estimated by visually comparing
the greatest positive and negative values of the measured field bz. Approximately equal values are indica-
tive of zero inclination, whereas predominantly positive or negative values correspond to 1908 or 2908,
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respectively (or else to 2908 or 1908, respectively, depending on the convention used). Intermediate incli-
nations can be reasonably estimated from the ratio between the greatest positive and negative values. Dec-
lination can be estimated from the angle between the y axis and the line connecting the greatest positive
and negative values of the field map. Lastly, an order-of-magnitude estimate of the strength can be found
by comparing the overall magnitude of the field values in the experimental and model field maps.

We emphasize that only coarse estimates of the optimization parameters are required to achieve rapid con-
vergence, and they are usually only necessary for the first step in a demagnetization or remagnetization
sequence. In this case, it is also beneficial to use the solution of a particular sequence step as the initial
guess for the subsequent step, as this can speed up the overall processing time. Henceforth we focus on
the Case 1 algorithm, which was the approach chosen to process all the synthetic and experimental data
shown in this paper.

3.2. Optimization Algorithm
To solve the optimization problem, we utilized a nonlinear least-squares algorithm with no added bound
constraints based on the subspace trust-region method described in Coleman and Li [1994, 1996], which is
implemented in MATLABVR by the function lsqnonlin. For the typical field strengths observed in scanning
SQUID microscopy and field maps expressed in nano-tesla (nT) units, we used as stopping criteria (i) a toler-
ance for changes in the value of the objective function of 1 3 10212, (ii) a tolerance for changes in the size
of a step of 1 3 10214, (iii) a maximum number of iterations of 3000, and (iv) a maximum number of func-
tion evaluations of 6000.

We also carried out a number of tests using the Nelder-Mead simplex algorithm [Lagarias et al., 1998], which
is implemented in MATLAB by the function fminsearch. However, we did not find any appreciable increase
in the accuracy of solutions that would warrant the longer convergence times associated with that
algorithm.

3.3. Uniqueness
The question of uniqueness of the solution to the net moment inverse problem is intrinsically related to the
existence of magnetically silent sources (annihilators) with nonzero moments. In order to uniquely recover
the net moment from magnetic field measurements, there cannot exist any magnetization distribution with
nonzero moment in a given class of magnetizations that produces no external magnetic field. Otherwise,
two magnetizations with different net moments would be indistinguishable as they would produce the
same observable field. Usually, a comprehensive characterization of silent sources in a general setting
involves sophisticated mathematics [Baratchart et al., 2013; Parker, 1994], but this issue is greatly simplified
in the case of a single dipolar source. In this situation, it is easy to see from (5) and its generalization for N
measurement points that there does not exist a nonzero dipole that produces a zero field everywhere on
the plane z5h. Thus, the solution to problem (6) is inherently unique provided that the field is adequately
sampled on the plane, such that the discretization of the problem is not an issue.

3.4. Finite Sensor Size
Depending on the magnetic sensing technology used in the mapping of the sample’s field, it may be neces-
sary to take into account the integration of the field over the sensing area or sensing volume of the magnet-
ic sensor. This is typically dictated by the ratio between sensor size and sensor-to-sample separation: the
smaller the sensor size compared to the separation, the less important the integration effects are (i.e., they
become essentially multiplication by a constant). Because magnetic fields vary slower in space as one
moves away from the sources, they come to be more uniform over the integration area as the separation
between sensor and sources increases, thus diminishing averaging effects over the sensing region. Interest-
ingly, arbitrarily enlarging the sensing region for a given sensor-to-sensor distance aiming to improve sensi-
tivity may actually have the opposite effect because magnetic fields of finite source distributions average to
zero over large areas or volumes [Weiss et al., 2001]. Modeling magnetic sensors as spatial filters is a power-
ful tool to analyze the effects of integration over a sensing region [Lima et al., 2002; Roth and Wikswo, 1990].
In particular, for SQUID sensors, the optimum tradeoff for pointwise sources consists of having the sensor
size roughly match the sensor-to-sample distance [Fong et al., 2005].

Whereas it is outside of the scope of this paper to discuss in detail magnetic sensor modeling, we point out
that (5) can be easily modified to take into account the effects of a finite sensing region. In this case, the
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left-hand side of (5) would no longer be the magnetic field measured at a set of points, but instead the field
averaged over regions centered about those points. Gaussian quadrature formulas [Abramowitz and Stegun,
1965; Kim and Song, 1997] are particularly useful for incorporating averaging effects into the model as they
maintain the overall structure of (5), which then becomes equivalent to a weighted sum of magnetic
dipoles:
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(9)

where xi;k5xi1Dx;k , yi;k5yi1Dy;k (for i 5 1, 2, 3), and C; wk ; Dx;k ; Dy;k are given by the integration region
and the chosen N-point quadrature formula, and the overbar denotes integration over a region (an area in
this case). Alternatively, the sensor response could be deconvolved from the measured data prior to solving
the optimization problem so as to undo the effects associated with sensor geometry [Lima et al., 2002]. The
main disadvantage of incorporating sensing region modeling is the increase in processing time.

In our experimental setup, the averaging effects over the sensing area usually represent a second-order
correction and can often be neglected in view of other sources of error. SQUID devices are calibrated by
measuring their response to a known applied uniform field. Given that the effective size of the sensing
area in our SQUID chips is between 50 3 50 and 80 3 80 lm2 (depending on their exact design) and that
the sensor-to-sample distance is typically greater than 100 lm (200 lm in this study, with an effective dis-
tance to the equivalent dipole for our three-dimensional samples greater than 300–400 lm), we can
show that the mean field does not differ significantly from the field value at the center of the sensing
area.

To illustrate this point, let us consider the z-component of the field of a magnetic dipole measured on a
plane at a distance h above it. To simplify the calculations we assume that the dipole points in the 1z direc-
tion, so as to produce an axisymmetrical field, and is located at the origin:

Bzðx; y; hÞ5 l0mz

4p
2h22x22y2

x21y21h2ð Þ5=2
5C0

2h22q2

q21h2ð Þ5=2
; (10)

where q5
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x21y2

p
and C05

l0mz

4p . For a SQUID sensor with effective area Aeff 5pa2 placed at the location
ðx0; y0; hÞ, the output signal is proportional to the magnetic flux U through Aeff:

Uðx0; y0; hÞ5
ða

2a

ðffiffiffiffiffiffiffiffiffiffia22y2
p

2
ffiffiffiffiffiffiffiffiffiffi
a22y2
p

Bzðx2x0; y2y0; hÞdxdy; (11)

where we assume a circular sensing area to simplify the calculations.

We wish to determine what the error is in approximating the integral in (11) by ~Uðx0; y0; hÞ5Aeff Bzðx0; y0; hÞ
(i.e., by size of the integration area times the field evaluated at the center of the integration area). In princi-
ple, such an approximation is reasonable: given that Bz is continuous for h 6¼ 0, the mean value theorem for
double integrals [Marsden and Tromba, 2012] ensures that there is a point ð~x ; ~yÞ within the integration
region such that Uðx0; y0; hÞ5Aeff Bzð~x ; ~y ; hÞ; however, that point may or may not be the center ðx0; y0Þ,
which is what may lead to inaccuracies in the approximation. The largest error in the approximation occurs
when the sensor is exactly above the test dipole, where Bz is maximum and the field values at all points in
the integration region are less than or equal to the one at the central point. In this situation, the actual flux
measured by the sensor is given by
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Uð0; 0; hÞ5
ð2p

0

ða

0

C0
2h22q2

q21h2ð Þ5=2
q dq du5

2pC0a2

a21h2ð Þ3=2
; (12)

in which we express the double integral in cylindrical coordinates for convenience. The approximate flux
(i.e., assuming a fixed calibration factor for the sensor) is

~Uð0; 0; hÞ5 2pa2C0

h3
: (13)

Computing the relative error between the two fluxes yields

Emax5
a21h2ð Þ3=2

h3
215

g211ð Þ3=2

g3
21; (14)

for h5ca. Substituting c58 in (14), which is a typical value for c in our setup, we get that the maximum rela-
tive pointwise error is about 2.4%. Notice that this overestimate is the maximum error in our approximation
at a single point and that the discrepancy is much smaller (or even zero) in other regions of the field map
(e.g., where the field exhibit a bilinear behavior). Thus, the overall impact on the net moment estimate is fur-
ther reduced by the least-squares optimization procedure. Similarly, the shape of the actual sensing area (a
square) and its lack of axial symmetry can be neglected in our case, as they affect the estimate even less.
Hence, in the analysis that follows averaging effects were not included in our computations. However, such
corrections may be important when using other magnetic field sensing technologies and experimental
setups.

4. Synthetic Samples and Sensitivity Analysis

As in our approach, standard rock magnetometers infer magnetic moment by assuming the measured sam-
ples are dipolar or nearly dipolar. The development of these magnetometers was guided by modeling the
magnetic fields of samples of various sizes and shapes, with the sizes and placement of their coils optimized
such that the inferred moments achieved accuracy to a few % for cm-scale uniformly magnetized cylindrical
and cubic samples [Collinson, 1983]. Following this approach, here we determine the maximum size of uni-
formly magnetized samples whose moments can be accurately retrieved using our technique given the typ-
ical sensor-sample distance of �100 lm encountered in SQUID microscopy. Specifically, we tested our
moment estimation technique with synthetic magnetic field maps obtained using three different types of
sources — single magnetic dipole, uniformly magnetized square measuring 50 3 50 lm2, and uniformly
magnetized cube of 50 3 50 3 50 lm3 — and various combinations of noise level and sensor-to-sample
distance. Gaussian white noise was added to field maps to simulate measurements under actual experimen-
tal conditions. For the noisy cases, we generated 15 field maps for each source type-noise level combina-
tion. This enabled us to determine the statistical dispersion in the recovered parameters due to different
realizations of the noise stochastic process.

As the sensor-to-sample distance was varied, the step size (i.e., discretization) and the mapping area were
adjusted accordingly so as to obtain field maps with identical number of points and comparable field decay
at the edges. In this way, we ensured that possible artifacts due to inconsistent discretization and cropping
of the magnetic field data were avoided. All synthetic field maps were composed of 64 3 64 points with a
mapping area-discretization configuration similar to the one shown in the central image in Figure 2c. For
dipolar test sources, the grid spacing and mapping area varied from 0.79 to 39.7 lm and from 50 3 50 to
2500 3 2500 lm2, respectively, as the sensor-to-sample distance varied from 10 to 500 lm. For the uniform-
ly magnetized square source and the same range of sensor-to-sample distances, grid spacing and mapping
area varied from 2.94 to 47.7 lm and from 185 3 185 to 3000 3 3000 lm2, respectively. In the case of the
uniformly magnetized cube, grid spacing and mapping area varied from 3.90 to 50.0 lm and from 246 3

246 to 3200 3 3200 lm2, respectively, for the same range of sensor-to-sample distances.

Regarding the test sources chosen, the magnetic dipole allows us to assess how sensitive the algorithm is
to the initial guesses for the model parameters and to noise, because the same source is used in the forward
and inverse problems. By using the uniformly magnetized square and cube test sources, we can then deter-
mine how performance is degraded as the source strays from a purely dipolar behavior and how noise
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further impacts the magnetic moment estimates. In this case, the sensor-to-sample distance intrinsically
controls the proportion of higher order multipole terms (e.g., quadrupole, octupole, etc.) introduced in the
forward model relative to the dipolar term. Whereas all these higher order terms have zero net moment by
virtue of the orthogonality properties of spherical harmonics, they may still negatively affect the net
moment estimates: given that those estimates are based on the matching of experimental and model field
maps, the dipole model parameters will be tuned so as to best match the whole experimental map and not
just the dipole component present in it. Therefore, care should be taken to ensure that the dipole term is
indeed dominant in the experimental data. If necessary, the magnetic field map should be upward contin-
ued to decrease the contribution of higher order terms. The prevalence of the dipole term can usually be
evaluated by analyzing the residual map and observing how correlated features eventually present in it
change as liftoff distance varies. Notice that this upward continuation approach often yields better results
than measuring the sample from a greater distance, as higher signal-to-noise ratio (SNR) can be achieved
and contamination of the field map by background sources and adjacent impurities is minimized.

Like in any technique that recovers magnetic moments from measurements of the magnetic field, the SNR
determines the weakest magnetic moment that can be recovered (i.e., magnetic moment sensitivity). The
SNR, in turn, is a function of the sensor-to-sample distance: the closer the sensor is to the sample, the stron-
ger the magnetic field (and, hence, the SNR) but the less likely the source distribution behaves as a single
dipole. Getting too close to the sources may also exacerbate the integration effects associated with the
finite size of magnetic sensors.

Figure 2. Optimization procedure for estimating the net moment of the source. The optimization problem was solved 50 times, each with different initial guesses for the model parameters.
The solution with the smallest cost function value (i.e., smallest residual) was then selected as the estimated magnetic moment. (Cost is displayed in arbitrary units – a.u.) Here, to highlight
the dispersion in the solutions, we show an unfavorable case in which a nondipolar test source is mapped at a small sensor-to-sample distance and field measurements are corrupted by
high levels of noise, negatively impacting the accuracy of the estimated moment (see section 4 for detailed discussion). (a) Plot of the recovered moment magnitude for each of the 50
calculated solutions with their corresponding costs. Each dark blue dot represents a single solution. Inset shows detail of the region containing solutions with the smallest costs. Axis labels
with the same value indicate that final errors in the solutions differ by less than 1025 a.u., which reflects the fact that the main source of mismatch between synthetic and model field maps
is the noise component. Dashed magenta line and corresponding light blue dot indicate the best solution to the optimization problem. (b) Plot of the recovered declination for each of the
50 calculated solutions with their corresponding costs. Other model parameters exhibit analogous behavior. (c) (left) synthetic field map of a uniformly magnetized 50 3 50 3 50 lm3 cube
measured on a 64 3 64 planar grid 100 lm above it with 12.1 lm grid spacing. White noise was added to yield an extremely poor SNR of 0 dB (i.e., a 1:1 proportion of noise and signal). The
magnetic moment of the cube is 1.0 3 10211 Am2 at 2458 inclination and 208 declination. (middle) field map of the magnetic dipole that best fits the data, which was found using the
abovementioned optimization procedure. (right) difference between synthetic and model maps, showing that they differ essentially by the noise component.
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For a given field map, the optimization was solved 50 times, each one with initial parameter estimates that
consisted of random perturbations of the initial guess by as much as 10% (up to 648 and 688 for the incli-
nation and declination parameters, respectively). As explained in section 3, the net moment estimate was
obtained by analyzing those 50 solutions to the optimization problem and picking the one with the smallest
residual (Figure 2). For each combination of source type and SNR, we repeated this procedure for 15 field
maps yielding a total of 15 net moment estimates: in the noiseless case, we used identical field maps,
whereas in the noisy cases, we used maps with different realizations of the random noise. We then comput-
ed the mean net moment by (vector) averaging the 15 net moment estimates. We also calculated the sam-
ple standard deviation and sample mean (or median depending on the case) for the moment magnitude,
recovered height, and angular error.

Notice that the noiseless maps allow us to demonstrate the consistency of the net moment estimates, given
that no scatter should be observed in such estimates when repeatedly inverting identical data if the global
minimum of the objective function is being effectively reached during the optimization procedure.

We begin by analyzing the noiseless case for all three synthetic sources (Figures 3a, 4a, and 5a). As expected, the
scatter in the recovered quantities — denoted by error bars representing plus or minus one sample standard
deviation — is negligible when no noise is present. Notice that the standard error of the mean (SEM), which mea-
sures the standard deviation of the error in the sample mean relative to the true mean, can be obtained by scal-
ing the sample standard deviation by 1=

ffiffiffiffi
N
p

, where N is the sample size. In our case, this corresponds to
shrinking the error bars by a factor of �3.9 to represent the SEM. Owing to the skewed nature of the distribution
of angular error in the net moment estimates, we display the median and first and third quartiles in that case.

There is no dependence of estimated moment magnitude and direction on liftoff distance for the dipole, as
expected (Figures 3a and 4a). There is also no deviation in recovered liftoff with respect to the true liftoff dis-
tance (Figure 5a). However, there is noticeable dependence of those quantities for the uniformly magnetized
square and cube sources. Such dependence is stronger for the square, which should be expected given that
the center of the cube lies deeper than that of the square (by definition, the liftoff distance is measured
between the magnetic sensor and the top of the source distribution/sample). In particular, the recovered
dipole lies deeper than the actual test source to compensate for the slower spatial decay of the magnetic field
in those cases. As a consequence, the magnitude of the moment has to increase so as to match the strength
of the magnetic field. The resulting error in the estimated moment, especially in the magnitude, can be quite
large (>250%) when the liftoff distance is smaller than the source dimensions (i.e.,< 50 mm for square plate).
For larger liftoffs (> 100 mm), the dipole term becomes dominant and accuracy improves rapidly.

Introducing noise in the field maps results in scatter in the net moment estimates and in other model parame-
ters. At moderate noise levels (20 dB SNR or 10:1 proportion between signal and noise), a small scatter of a
few percent is noticeable in the moment magnitude (Figure 3b) and of about a degree in the direction (Figure
4b). The scatter in the recovered liftoff is comparatively smaller and barely noticeable (Figure 5b). Increasing
the noise level to yield an SNR of 10 dB (i.e., 3.2:1 proportion of signal and noise) has the effect of increasing
the scatter by a comparable amount (Figures 3c, 4c, and 5c). Finally, for a very poor SNR of 0 dB (i.e., equal pro-
portion of signal and noise) the scatter increases further by another factor of �3. Notice that in all noisy cases,
the overall trend of the recovered quantities observed in the noiseless case for the three sources is preserved.

An important point that can be seen in Figures 3–5 is that the mean net moment typically yields better esti-
mates of the true moment’s magnitude and direction than directly computing the mean or median of the
individual parameters. For example, the angular error of the mean net moment is noticeably smaller than
the median of the angular errors of the individual solutions. Whereas in paleomagnetic studies it may not
be practical to repeatedly map a sample 15 times (for each magnetization/demagnetization step), as was
done in this computational experiment, it is nevertheless beneficial to make a few repeated maps so as to
improve the accuracy of the net moment estimates through vector averaging, particularly when measuring
very weak samples with degraded signal-to-noise ratios.

5. Application to Geological Samples

To experimentally validate our technique, we imparted controlled magnetizations on geological samples
with approximately dipolar magnetizations. We measured the samples using both a commercial SQUID
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Figure 3. Magnitude of estimated net moments as a function of liftoff distance for all three test sources and different noise levels. Each colored circle represents the magnitude of the mean
net moment (the mean of the magnitudes of estimated moments was omitted for clarity purposes, as it virtually coincides with the magnitude of the mean net moment). The error bars repre-
sent plus or minus one sample standard deviation. (a) Noiseless case (SNR 51). (b) 10:1 proportion of signal and noise (SNR 5 20 dB). (c) 3:1 proportion of signal and noise (SNR 5 10 dB). (d)
1:1 proportion of signal and noise (SNR 5 0 dB). Black dashed line indicates the true magnitude of the moment, and the gray rectangle denotes the region in the plot where deviations from
the true magnitude are smaller than or equal to 5%. By definition, the liftoff distance is measured between the magnetic sensor and the top of the source distribution/sample.
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Figure 4. Error in the direction of the estimated net moments as a function of liftoff distance for all three test sources and different noise levels. Each colored circle represents the sample median of
the angular error. The error bars denote the first and third sample quartiles. Colored triangles in the insets show the angular error of the mean net moment, which is typically smaller than the sample
median. (a) Noiseless case (SNR 51). (b) 10:1 proportion of signal and noise (SNR 5 20 dB). (c) 3:1 proportion of signal and noise (SNR 5 10 dB). (d) 1:1 proportion of signal and noise (SNR 5 0 dB).
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rock magnetometer (2G Enterprises 755 SRM) (sensitivity 1 3 10212 Am2) [Fuller et al., 1985] and the SQUID
microscope (sensitivity 1 3 10215 Am2) [Fong et al., 2005] housed in the MIT Paleomagnetism Laboratory.
For each demagnetization step, the samples were successively measured on both instruments and trans-
ported between shielded rooms in a magnetically shielded can. We estimate the reproducibility in reposi-
tioning the samples in each instrument to be better than 2–38, with the declination being the main source
of uncertainty. Note that although recent studies of 2G pass-through SRMs have observed systematic angu-
lar errors of a few degrees in the orientation of the measurement axes and a small discrepancy in sensitivity
owing to imperfections in the manufacturing and characterization of the instrument [Jackson et al., 2010;
Oda and Xuan, 2014; Oda et al., 2016], we independently calibrated the SQUID axis orientations for our sys-
tem after its arrival at MIT (also our system is equipped with high-homogeneity coils).

In this section, no vector averaging of moment estimates obtained from SM data was performed, so as to
provide a fair and direct comparison between our technique and standard SQUID rock magnetometry. Note
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Figure 5. Recovered liftoff as a function of liftoff distance for all three test sources and different noise levels. Each colored circle represents
the recovered liftoff. The error bars represent plus or minus one sample standard deviation. (a) Noiseless case (SNR 51). (b) 10:1 propor-
tion of signal and noise (SNR 5 20 dB). (c) 3:1 proportion of signal and noise (SNR 5 10 dB). (d) 1:1 proportion of signal and noise (SNR 5 0
dB). Black dotted line indicates the true liftoff, and the gray area denotes the region in the plot where deviations from the true liftoff are
smaller than or equal to 5%. Two black dashed lines represent 610 lm deviation from the true liftoff.
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however that each data point measured with our 2G system actually consists of a vector average of four
moment measurements obtained by rotating the sample about the z (up-down) axis in 908 intervals. (An
exception is section 5.3, which is not part of the comparison, where a few AF demagnetization steps in the
sequence were repeated and SM moment data were averaged.)

5.1. Impact Spherule From Lonar Crater, India
We began by magnetizing a �300 lm impact melt spherule from Lonar crater in India [Weiss et al., 2010] by
imparting a 200 mT isothermal remanent magnetization (IRM). Following the IRM application but prior to
measuring it with the 2G SRM, the sample was then mounted on a magnetically clean acid-washed 2.5 cm
diameter quartz disc using cyanoacrylate (superglue) in order to minimize the contribution to the net
moment from the quartz disc. The 2G SRM measured a moment of 5.8 3 1029 Am2, >10003 above its
moment resolution. The remounting on a magnetically clean disc ensured that the moment of the quartz
disc is weak compared to the sample moment measured with the 2G SRM but has the limitation that the
original sample orientation was lost due to difficulties in maintaining the absolute orientation of such a
small sample between the IRM application and gluing it on the disc. The loss of orientation is not a major
issue since having a magnetization that is not purely vertically oriented is beneficial for testing the tech-
nique more generally. Note that Weiss et al. [2010] observed that Lonar spherules have no appreciable
anisotropy of remanence.

This sample was then progressively alternating-field (AF) demagnetized. For each demagnetization step,
the sample was measured on both instruments and the results compared (Figures 6a and 6b). The sample’s
moment decreased down to a minimum value of 4.0 3 10211 Am2, always remaining above the sensitivity
limits of both magnetometers. This high moment explains why the measurements of the two magneto-
meters agree well for most of the demagnetization sequence. Although measurements from both instru-
ments agree in general to within better than 10% in intensity and 48 in direction, there are discrepancies in
direction and intensity for the final two demagnetization steps (160 and 200 mT) even though the sample
moments at these steps according to the 2G SRM are still 2.6 3 10211 and 5.1 3 10211 Am2, respectively
(1.4 3 10210 and 4.0 3 10211Am2, respectively, according to SQUID microscope). In this AF range, the direc-
tional data from the SQUID microscope measurements show a �608 change in declination with almost no
change in inclination between the first (i.e., IRM) and last (AF 200 mT) steps. In contrast, the 2G data imply a
hemisphere change and inclination shallowing in the last demagnetization step.

To determine which instrument is yielding more accurate data, we look at the SQUID microscope field
maps of the first (Figure 6c) and last (Figure 6d) steps in the sequence. It is very clear that there is no visually
perceptible change in inclination whereas declination varies by approximately 608. Note that information
about declination can be obtained from the line connecting the maximum and minimum fields in a map;
inclination is associated with the ratio between the maximum and minimum fields in a map, with zero incli-
nation corresponding to a ratio of 1. This suggests that, in this measurement scenario, the SQUID micro-
scope data are much more accurate than the 2G data.

The reason for the superior performance of the SQUID microscope can be observed from Figure 6d: areas
with weaker magnetization surround the spherule, likely from impurities in the quartz disc and dust par-
ticles that became trapped in the glue. The mapping area shown is 4 3 4 mm2 and only reveals a small frac-
tion of the contaminating magnetization that could be present in a 2.5 cm diameter quartz disc. The small
discrepancy in Figure 6b in the beginning of the demagnetization sequence is likely attributed to contami-
nating magnetization, which is visible in the field maps, but the sources of uncertainty discussed in the
beginning of aection 5 may also contribute in part to the observed differences. Such secondary sources
have very little effect on the net moment estimates obtained from the SQUID microscopy data but directly
affect the 2G measurements. This is an enormous advantage of magnetic microscopy over standard rock
magnetometry when dealing with very weak samples: contamination in the sample holder is visually evi-
dent and its effects can be minimized in the vast majority of cases. On the other hand, it can be difficult to
ascertain whether standard SQUID rock magnetometry data are partially biased or even dominated by sec-
ondary sources when measuring very weak samples. We emphasize that the observed discrepancies occur
well above the detection limit of our 2G SRM (�1 3 10212 Am2), which underscores the necessity of utiliz-
ing ultra-clean mounting and handling techniques when analyzing very weakly magnetized samples. Such
techniques minimize the amount of quartz and glue used to affix the sample and ensure that dust particles
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do not stick to the specimen during preparation and subsequent AF or thermal demagnetization. For exam-
ple, by mounting samples on >10 cm long, 3 mm diameter clean quartz rods instead of the 2.5 cm discs
used here, Fu et al. [2012b] were able to measure and demagnetize the NRM of samples of the eucrite
ALHA81001 down to below 5 3 10212 Am2.

5.2. Millbillillie Eucrite
Following our analysis of the Lonar spherule, we proceeded to measure a weaker sample: cutting dust from
the Millbillillie eucrite [Fu et al., 2012a]. A clump of this material was mounted on a 2.5 cm diameter quartz
disc using silver paste designed for scanning electron microscopy applications as a nonmagnetic adhesive.
A TRM was imparted by heating the sample to 5808C while applying a 50 lT dc magnetic field, followed by
thermal demagnetization steps up to 4508C (Figure 7). After imparting the TRM, the sample was dismounted
and reglued on a clean nonmagnetic quartz disc to again reduce the effects of background sources on the
2G SRM measurements. As a result, the orientation of the applied field relative to the measured sample is
unknown. During the course of thermal demagnetization, the sample’s moment dropped below the noise
limit of the 2G SRM (from a starting moment of 1.9 3 10211 Am2 down to 6.6 3 10213Am2). Consequently,
the 2G SRM data are noisier than the SQUID microscope data and do not trend to the origin, which we attri-
bute to a combination of contamination sources and instrument noise. (We note again that the 2G data
could have been improved somewhat if we had used thin quartz rod mounts instead of the 2.5 cm quartz
discs used here.) In contrast to the 2G SRM data, the SQUID microscope data, which are less sensitive to

Figure 6. AF demagnetization of an impact melt spherule from Lonar crater in India. We imparted a 200 mT IRM to the spherule prior to mounting it on a quartz disc and subsequently
carrying out the AF demagnetization steps. At each step, the spherule was measured on the 2G SRM and on our SQUID microscope (SM). (a) Net moment directional data shown on an
equal area stereoplot (SQUID microscope data shown in red, 2G data shown in blue). Open symbols and solid lines represent projections on upper hemisphere and closed symbols and
dashed lines represent projections on lower hemisphere. (b) Up-east (Z-E) and north-east (N-E) projections of the endpoints of the net moment vector shown (SQUID microscope data
shown in red, 2G data shown in blue). (c) Vertical component (i.e., normal to the sample mount) of the sample’s magnetic field after an IRM was imparted using a field of 0.2 T. (d) Vertical
component of the sample’s field after the final AF demagnetization step (200 mT peak field). Notice the �608 change in declination between the two steps with almost no change in
inclination. The magnetic field maps were measured �200 lm above the sample on a 100 3 100 grid with 50 lm spacing.
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contamination on the sample mount and have better sensor resolution, are much cleaner and clearly trend
to the origin up to temperatures of 4508C. Because this experiment only involved thermal demagnetization,
it demonstrates that the observed discrepancies and scatter in the data cannot be attributed to spurious
anhysteretic remanent magnetization (ARM) noise during AF demagnetization.

5.3. Detrital Zircons From the Jack Hills, Western Australia
Having established that the technique agrees with independent measurements for stronger samples and
that it yields robust data for weaker samples, we proceeded to apply the technique to ultra-weak samples
that cannot be detected using standard rock magnetometers. Detrital zircon crystals from the Jack Hills in
Western Australia are an important target as they may preserve records of the origin and earliest evolution
of the geodynamo [Weiss et al., 2015]. Their magnetizations typically fall below the detection limit of com-
mercial rock magnetometers and often exhibit dipolar characteristics at the spatial scale of SQUID
microscopy.

To demonstrate the performance of our ultra-high sensitivity moment magnetometry technique, we con-
ducted AF demagnetization data on two detrital zircons from the Jack Hills (Figures 8 and 9) extracted from
the Hadean zircon sampling site at Erawandoo Hill (site EHJH5 of Weiss et al. [2016, 2015]). Given their very
weak moments, the two zircons were carefully mounted (together with two additional zircons) on an acid-
washed 2.5 cm diameter quartz disc using cyanoacrylate. This procedure was performed in a clean room
using nonmagnetic ceramic tools and an adjustable-volume pipette to minimize any chance of contamina-
tion by dust and other spurious sources of magnetic field. Three weakly magnetized markers (toner dots
printed on paper) were initially glued near the edge of the disc for registration purposes and later removed
once the location of each zircon in the NRM field map was unequivocally established. The first zircon clearly
shows an origin-trending pattern with good directional stability (Figure 8), starting with an NRM moment of
6.0 3 10214 Am2 that demagnetized to 3.0 3 10215Am2 by the AF 65 mT step. Moderate scatter in the data
is predominantly due to the zircon’s behavior under AF demagnetization and cannot be attributed to instru-
ment noise. A few steps in the demagnetization sequence were repeated and moment data averaged to
reduce this effect. This point is confirmed by the demagnetization of a second zircon, which exhibits larger

Figure 7. Thermal demagnetization of a small clump of cutting dust from the Millbillillie eucrite. We imparted a 50 lT TRM at 5808C to the sample prior to carrying out a sequence of
thermal demagnetization steps. At each step, the sample was measured on the 2G SRM and on our SQUID microscope (SM). (a) Net moment directional data shown on an equal area
stereoplot (SQUID microscope data shown in red, 2G data shown in blue). Open symbols and solid lines represent projections on upper hemisphere and closed symbols and dashed lines
represent projections on lower hemisphere. (b) Up-east (Z-E) and north-east (N-E) projections of the endpoints of the net moment vector shown (SQUID microscope data shown in red,
2G data shown in blue). The magnetic field was mapped �200 lm above the sample on a 100 3 100 grid with 40 lm spacing.

Geochemistry, Geophysics, Geosystems 10.1002/2016GC006487

LIMA AND WEISS ULTRA-SENSITIVE MOMENT MAGNETOMETRY 17



scatter and no decay despite having slightly stronger moment magnitudes (�1 3 10213 Am2) during most
of the demagnetization sequence (Figure 9). It is clear that the observed differences in demagnetization
pattern indeed stem from the samples. The relatively noisy demagnetization is likely due at least in part to
the very small quantities of ferromagnetic material present in them (see section 2).

5.4. Other Ultra-Weak Magnetic Sources
To further test the detection limit of the SQUID microscope technique, we measured an ultra-weak second-
ary source present in a blob of silver paste on a quartz disc. SQUID microscope maps indicate its net
moment is just 3.6 3 10215 Am2 (Figure 10), which is nearly the same moment magnitude as the last

Figure 8. AF demagnetization sequence of a Jack Hills zircon measured with our SQUID microscope (SM). (a) Net moment directional data shown on an equal area stereoplot. Open
symbols and solid lines represent projections on upper hemisphere and closed symbols and dashed lines represent projections on lower hemisphere. (b) Up-east (Z-E) and north-east
(N-E) projections of the endpoints of the net moment vector. The magnetic field was mapped �200 lm above the sample on a 121 3 121 grid with 25 lm spacing.

Figure 9. AF demagnetization sequence of a Jack Hills zircon measured with our SQUID microscope (SM). (a) Net moment directional data
shown on an equal area stereoplot. (b) Up-east (Z-E) and north-east (N-E) projections of the endpoints of the net moment vector shown.
The magnetic field was mapped �200 lm above the sample on a 121 3 121 grid with 25 lm spacing.
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demagnetization step of the first zircon (Figure 8). Despite being extremely faint, analysis of the residuals
map reveals that we are still above the instrument’s noise floor (typically in the few tens of pT, excluding
long-term sensor output drift) by at least a factor of 5. This suggests that our actual detection limit — with-
out additional signal processing to filter out instrument noise from the field maps — is in the mid to upper
10216 Am2 range. This encompasses the full range of sample moments expected to yield accurate paleodir-
ectional and paleointensity constraints on the ancient field (section 2).

6. Conclusions

We have demonstrated that natural geologic samples should contain paleomagnetically useful information
down to moments 100–1000 times below that detectable with standard rock magnetometers. To measure
such samples, we developed an ultra-high sensitivity moment magnetometry technique based on magnetic
microscopy that allows us to uniquely measure the net moments of extremely faint magnetic sources below
1 3 10215 Am2, thereby encompassing the full range of samples expected to be useful for paleomagnetism.
We validated the technique by choosing suitable samples that could be independently measured with a
commercial superconducting rock magnetometer. This comparison demonstrates some of the relative
strengths of our technique relative to standard rock magnetometry, which not only include superior
moment sensitivity but perhaps equally importantly a powerful ability to detect contaminating sources
while minimizing their effect on the recovered moment. Our analysis with synthetic data revealed that the
technique is accurate for dipolar sources even when measurements are contaminated with high levels of
noise. We also showed that the major source of error in the net moment estimates is the possible deviation
of the sample’s magnetization from a magnetic dipole, an issue which also limits the accuracy of standard
rock magnetometry. This can be ameliorated by upward continuing the magnetic field data so as to reduce
the contribution of higher order multipole terms and enhance the contribution of the dipole term. Alterna-
tively, more sophisticated source models could potentially be used to improve accuracy (e.g., multiple
dipoles, incorporation of quadrupole terms into the modeling, uniformly magnetized areas/volumes) but at
the expense of slowing down the algorithm. Although here we applied the technique to data only from
SQUID microscopy, our technique can be directly applied to field maps obtained with other scanning mag-
netic microscopes and magnetic imaging techniques (e.g., magneto-optical imaging [Uehara et al., 2010]
and quantum diamond magnetometry [Hong et al., 2013]).
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