
1. Introduction
Ocean worlds, planetary bodies with large-scale liquid water layers (Nimmo & Pappalardo, 2016), have been 
discovered amongst the icy moons of Jupiter and Saturn and perhaps beyond. Ocean worlds are of great interest 
for several reasons. Most importantly, they are potentially habitable environments. Second, their volatile-rich 
interiors represent a unique end member of planetary structure. Third, they are natural laboratories for coupled 
tidal, orbital and thermal evolution.

The icy moons of the ice giants are likely to be major targets of upcoming spacecraft missions (e.g., Balint 
et al., 2020; Elder et al., 2021; Hofstdater & Simon, 2017). Here we explore the possibility of detecting and 
characterizing subsurface oceans on the five major moons of Uranus—Miranda, Ariel, Umbriel, Titania, and 
Oberon—using spacecraft magnetometry measurements from flybys and orbiters. Amongst the 27 known 
Uranian moons, these are the only bodies sufficiently large to likely retain liquid water today. With the possible 
exception of that of Oberon, their surfaces show geomorphological evidence for resurfacing following accretion 
which may be a signature of past or present subsurface water. We consider the approach of magnetic induction 
whereby a spacecraft magnetometer senses magnetic fields from electrical currents in the oceans generated by 
Uranus's time-varying magnetic field. We focus on Ariel since it may be the most likely amongst the major moons 
to have a present-day ocean and because it experiences some of the strongest variations in the Uranian field.

This work, first presented in meeting form (Weiss et al., 2020, 2021), was conducted simultaneously and inde-
pendently of two complementary studies (Arridge & Eggington, 2021; Cochrane, Nordheim, et al., 2021). The 
former focuses more on the two outermost moons and incorporates the effects of magnetospheric currents 
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(Arridge & Eggington,  2021), while the latter focuses more on statistical induction forward models and the 
possible effects of an ionosphere and current sheet (see Cochrane, Nordheim, et  al., 2021, Cochrane, Vance, 
et al., 2021). Our study uniquely considers the implications of recent compositional and thermal evolution models 
for Ariel, including the possibility of a conducting briny rocky core, for detection and characterization of its liquid 
interior.

2. Interior Structures of the Major Moons
2.1. Overview of the Major Moons

Uranus' major moons have radii ranging from 235.8 km (Miranda) to 788.9 km (Titania) that generally increase 
outwards with semimajor axis (but with a ∼3% decrease from Titania to Oberon) (de Pater & Lissauer, 2015). 
Their orbits are near-circular (eccentricities 0.0011 to 0.0039) and largely confined to the equatorial plane of 
Uranus (inclinations 0.041–0.13°, except for Miranda which is 4.3°) with semimajor axes ranging from 5.1 
(Miranda) to 22.8 (Oberon) Uranus radii (𝐴𝐴 𝐴𝐴U ) (JPL Solar System Dynamics, 2021). They are not currently in 
mutual mean motion resonances (Ćuk et al., 2020; Tittemore, 1990).

The moons have mass ratios of rock to ice ranging from ∼0.5 to ∼0.7 for all but Miranda, which has 0.3 
(Hussmann et al., 2015). Their surfaces are dominated by H2O ice [possibly in the form of methane clathrates 
(Schenk, 1991)], while CO2 has also been identified on Ariel, Umbriel and Titania (Grundy et al., 2006). With 
the possible exception of Oberon, their surfaces show resurfacing, variably manifested as possible deformational 
features related to subsurface upwellings (e.g., coronae), surface extension (e.g., grabens), and/or cryovolcanic 
flows (Schenk & Moore, 2020). In particular, Ariel's surface consists of lightly cratered plains with viscously 
relaxed craters. The plains are dissected by 2–4 km deep troughs with floors covered with possible cryovolcanic 
materials interpreted to be H2O ice and/or NH3-hydrates (Cartwright et al., 2020; Schenk, 1991). The ages of the 
moons' surfaces may be as young as 0.1–0.4 billion years for Ariel and Miranda (Zahnle et al., 2003). The heat 
responsible for the resurfacing of the moons may have been supplied by the gravitational energy of formation, 
radiogenic elements, and possibly tidal forcing (Hussmann et al., 2015).

Three main theories for the moons' origin have been proposed. First, they may have accreted out of material that 
condensed in a circumuranian nebula (Szulágyi et al., 2018). However, it is uncertain if this is consistent with 
Uranus's 98° obliquity, which is thought to be the product of giant impacts near the end of Uranus' formation 
(Kegerreis et al., 2018; Morbidelli et al., 2012; Rogoszinski & Hamilton, 2021; Safronov, 1966). An alterna-
tive scenario is that the moons accreted subsequently out of the ejecta disk (Ida et  al.,  2020; Rogoszinski & 
Hamilton, 2021; Slattery et al., 1991). A third possibility is that the moons formed from tidal interactions between 
Uranus and rings created from the disruption of cometary material [e.g., Crida & Charnoz (2012)].

In the circumuranian nebula formation by model by Szulágyi et al. (2018), the moons formed sufficiently early 
that they likely contained the short-lived radionuclide  26Al whose decay led to heating that could have driven 
early volatile melting and internal differentiation. Formation from an ejecta disk would likely have occurred after 
the  26Al heat source was exhausted and would have required tidally driven heating for moon interiors to partially 
melt. Lastly, following accretion in a first generation of rings, the moons could have been tidally heated during 
a period of high eccentricity orbits (Charnoz et al., 2011). In the latter scenario, the moons would have formed 
mostly undifferentiated and undergone partial melting. Neveu and Rhoden (2019a) suggested such bodies could 
sustain long-lived convection of brines in a porous rocky core (25% porosity).

2.2. Possible Interior Oceans

The moons's surface ages suggest that they are not subject to significant tidal heating at present. However, the 
moons may have previously passed through one or more low-order mean motion resonances that may have gener-
ated substantial heating (Chen et al., 2014; Ćuk et al., 2020; Tittemore, 1990). Hence, the preservation of a deep 
relict ocean is mainly determined by the modalities of heat transfer since the moons emerged from past reso-
nances. Considering the strong temperature-dependence of ice's thermal conductivity, the moons would freeze 
in a few hundred million years following a melting event in the absence of a long-term heat source [following 
Castillo-Rogez et al. (2019)]. Clathrate hydrates in the icy shell could significantly slow freezing of the hydro-
sphere (Castillo-Rogez et al., 2019; Kamata et al., 2019). The porous briny core model (Neveu & Rhoden, 2019a) 
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may not allow for the presence of deep oceans in the moons except for Ariel (preliminary results by Neveu and 
Rhoden (2019b), whereas a clathrate-rich shell could likely maintain relict oceans in all the moons but Miranda 
[see also Hussmann et al., 2006)].

Given these uncertainties for the moons, we consider a broad range of interior models consisting of two and three 
layers with spherical symmetry (Figure 1). The three-layer model, which represents the case of a relict ocean, 
consists of an innermost nonconducting rocky core of radius 𝐴𝐴 𝐴𝐴𝑐𝑐 overlain by a ocean of thickness, 𝐴𝐴 𝐴 and uniform 
conductivity, 𝐴𝐴 𝐴𝐴 , and capped with a nonconducting icy shell of thickness, 𝐴𝐴 𝐴𝐴 (e.g., Zimmer et  al.,  2000). The 
two-layer model, which represents the briny core case, consists of an innermost porous briny core of thickness, 

𝐴𝐴 𝐴 , and uniform conductivity, 𝐴𝐴 𝐴𝐴 , capped with a nonconducting ice shell of thickness, 𝐴𝐴 𝐴𝐴 . The outermost ice layer in 
both models has a radius equal to the mean radius of each moon, 𝐴𝐴 𝐴𝐴𝑚𝑚 . Mathematically, the two-layer model is an 
end-member of the three-layer case for which 𝐴𝐴 𝐴𝐴𝑐𝑐 = 0 . Because theory and observations indicate the moons at most 
should have tenuous atmospheres (surface pressure <20 nbar even around the largest moon, Titania), we have 
not included an additional outer conducting layer associated with a putative ionosphere (Widemann et al., 2009). 
Also, we have not included the contribution from a putative metallic core because its contribution to the induction 
signal is expected to be small (e.g., Zimmer et al., 2000). Analysis of these and other additional conductive layers 
should be the subject of future work.

For Ariel, we focus on two particular realizations of the relict ocean and briny core models that are motivated by 
the above considerations. For Ariel's relict ocean model, we consider a <30 km-thick conductive ocean underlying 
a 170-km thick non-conducting clathrate-rich shell. For Ariel's briny core model, we consider a solid hydrosphere 
overlying a briny porous rocky core (25% porosity). Both structures are consistent with Ariel's estimated ratio of 
rock to ice, which would indicate a total hydrosphere thickness of ∼150–200 km for a differentiated body. The 
electrical conductivities of the conducting layers in these two cases are based on the fact that accreted volatiles 
such as CO2 and NH3 could significantly contribute to ocean conductivity in the form of bi/carbonate ions and 
ammonium. An average cometary composition would lead to an electrical conductivity of ∼2 S m −1 (0°C) prior 
to an increase of the salinity from freezing. A 30-km thick relict hypersaline ocean could have a conductivity of 
15 S m −1 based on terrestrial analogs (Rebello et al., 2020) and correcting for temperature effects (Smith, 1962). 
These are likely minimum values because we are not considering pressure effects, which tend to increase electri-
cal conductivity at the tens of MPa pressure relevant to Ariel's residual ocean (Schmidt & Manning, 2017) and 
because <30 km thick oceans would have even more concentrated solute. In the case of a briny core, the electrical 
conductivity of the mixture computed with Archie's law is of order of 1–3 S m −1 for 30% brine mixed with rock 
(with the range reflecting uncertainties in brine temperature). For this study, we assume the mean value 2 S m −1.

3. Methodology
3.1. Overview of Magnetic Induction

We employ the technique of magnetic induction to search for conducting subsurface saltwater oceans (Zimmer 
et al., 2000). Time-varying fields inside a conducting body generate currents by Faraday's law of induction. These 

Figure 1. Assumed Moon interior models. (a) General model for all the moons, consisting of three-layer spherical body with 
a nonconducting rock ice core of radius 𝐴𝐴 𝐴𝐴𝑐𝑐 , overlain by a conducting layer of thickness, 𝐴𝐴 𝐴 , and conductivity, 𝐴𝐴 𝐴𝐴 , which is in turn 
overlain by a nonconducting ice shell of thickness, 𝐴𝐴 𝐴𝐴 . (b) Two end-member spherically layered models for Ariel. Left: relict 
ocean, consisting of <30 km-thick ocean with conductivity of 15 S m −1. Right: briny core, consisting of 430 km-thick porous, 
rocky mantle with conductivity of 2 S m −1.



Geophysical Research Letters

WEISS ET AL.

10.1029/2021GL094758

4 of 10

currents in turn generate a secondary magnetic field by Ampere's Law that can be sensed by a magnetometer. 
With Ohm's law, it can be shown that the ocean current density, 𝐴𝐴 ⃖⃖⃗𝑱𝑱  , is given by the solution to a diffusion equation: 

▿� ⇀
�=���

(

�⃖⃖⃗�∕��
)

 for time, 𝐴𝐴 𝒕𝒕 , and permeability of free space, 𝐴𝐴 𝝁𝝁
0
 (Jackson, 1999).

These driving fields can be used to probe for subsurface oceans in two stages of exploration. First, detection 
of induced fields from at least one close (i.e., <∼1 moon radius in altitude) flyby could detect an ocean by 
measuring the induction response at a single frequency. However, degeneracies between the ocean thickness, 
ice thickness, and ocean conductivity make it challenging to determine these parameters separately from such 
single-frequency sounding. This is what the Galileo mission achieved for Europa (Zimmer et al., 2000). Second, 
repeated, longer-term measurements at a given moon could enable multi-frequency sounding data that could 
enable separate determination of the ocean thickness, ice thickness, and ocean conductivity (Seufert et al., 2011). 
This is the goal of the Europa Clipper mission (Raymond et al., 2015).

In the following, we begin by calculating the driving field, the time-variable field of Uranus as viewed by each 
moon. We will then use this to calculate the induced field. The spacecraft will measure a superposition of the 
steady component of the Uranian field, the driving field, and the induction field. As a metric for the feasibility of 
using magnetic induction to search for subsurface oceans, we will compare these fields to the nominal sensitivity 
of a spacecraft magnetometry investigation. For a typical spacecraft fluxgate magnetometer and/or gradiometer 
on ≳2 m long boom, magnetic field accuracies of <1 nT have been commonly achievable (Anderson et al., 2007; 
Connerney et al., 2017; Glassmeier et al., 2010; Kivelson et al., 1992).

3.2. Driving Field

Our goal is to calculate the magnetic field in the time and frequency domain of each moon. At the locations of the 
moons orbits, Uranus' magnetic field is well described by a dipole offset from Uranus' center by ∼0.3 𝐴𝐴 𝐴𝐴U along 
the spin axis toward the geographic north pole and tilted by 59° (Connerney et al., 1987). The wobbling of the 
field due to Uranus' rotation (17.2 h period), combined with orbital motion due to the moon's nonzero eccentrici-
ties and inclinations (periods ranging from 33.6 to 323 h from Miranda out to Oberon), collectively produce time 
variable fields in the reference frames and locations of the moons.

We calculated the moon's motions using their orbital elements (JPL Solar System Dynamics, 2021) as well as 
using SPICE kernels (The Navigation and Ancillary Information Facility, 2021). Because we found that both the 
frequencies and amplitudes of the signals with amplitudes >1 nT for both approaches were essentially indistin-
guishable given the accuracy of our discrete fast Fourier transform (FFT) implementation (see below), here we 
report just the results using the orbital elements. In the moon's reference frames, x points from the moon toward 
Uranus, y points opposite the direction of orbital motion, and z completes the right handed-triad (nearly along 
the spin axis of Uranus).

For the Uranian field, we used the internal hexadecapole AH5 magnetic field model derived from Voyager 2 
Magnetometer data and Ultraviolet Spectrometer observations of aurora (Herbert, 2009) (Figure S1) at the epoch 
of the Voyager 2 flyby (1986). Given the estimated magnetopause distance of ∼19𝐴𝐴 𝐴𝐴U , all of the moons with the 
occasional exception of Oberon and Titania should spend essentially all of their time within the magnetosphere 
(Paty et al., 2020). Furthermore, the large angle between Uranus's spin and offset dipole axes means that the 
moons will spend relatively little time near the magnetic equator where field perturbations associated with a 
magnetospheric plasma sheet could mask the induction signals (Cochrane, Vance, et  al.,  2021). Because we 
are focused on the innermost moons, we have neglected the effects of external diurnally and seasonally driven 
magnetospheric currents on the driving field; these are likely mainly relevant for Titania and Oberon (Arridge & 
Eggington, 2021) and should be the subject of future work.

We calculated the field at each moon with a frequency interval of 0.01× the synodic frequency (i.e., time required 
for a moon to return to the same longitude above Uranus's surface) over a duration of 10 7× the synodic frequency. 
These were chosen to minimize spectral leakage and the picket fence effect (Girgis & Ham, 1980) in the FFTs 
in order to accurately estimate the amplitudes of the synodic frequencies and their harmonics. We found that the 
highest amplitude variation is in the x-component followed by the y-component, with both components having 
near-zero mean and ∼90° offset in phase from one another (Figures 2 and S2). The z-component variations are 
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much weaker (ranging from 14% down to 3% of that of the x-component proceeding outward from Miranda to 
Oberon) and with non-zero mean (Figures 2 and S2).

We find that the dominant frequency at the major moons is that of the synodic. The periods, 𝐴𝐴 𝐴𝐴  , and total field 
amplitudes, 𝐴𝐴 𝐴𝐴 , of the synodic variations range from ∼35 h and ∼330 nT at Miranda to ∼18 h and ∼3.6 nT out at 
Oberon. Furthermore, the moons experience a rich range of other driving frequencies at harmonics of the synodic 
frequency, their orbital frequencies, beating between the synodic and orbital frequencies, and harmonics of these 
frequencies (Figures 3 and S3); similar results were obtained by Cochrane, Vance, et al. (2021) and Arridge and 
Eggington (2021). We find that for Miranda, Ariel, and Umbriel, the first four, three and two harmonics of the 
synodic period, respectively, have amplitudes exceeding the nominal 1 nT magnetometry sensitivity threshold. 
Meanwhile, for Titania and Oberon, only the first harmonic of the synodic period exceeds this value. The orbital 
frequencies for all the moons are below this threshold largely due to the moons' low inclinations.

3.3. Induced Field

We calculate the induced field, 𝐴𝐴 𝐴𝐴ind , using the two and three-layer models (Figure 1) following classic techniques 
in electrodynamics (Jackson,  1999; Parkinson,  1983; Srivastava,  1966; Zimmer et  al.,  2000). Let us express 
Uranus's field, 𝐴𝐴 ⃖⃖⃗𝐵𝐵U , as a sum of a time-independent term, 𝐴𝐴 ⃖⃖⃗𝐵𝐵0 and a time-variable primary field 𝐴𝐴 ⃖⃖⃗𝐵𝐵pri that drives 
induction. The primary field can be expressed as the sum of 𝐴𝐴 𝐴𝐴 = 1 ∶ 𝑁𝑁 frequency components with amplitudes, 
⃖⃖⃗�� , frequencies, �� = 2�∕�� , and phases, 𝐴𝐴 𝐴𝐴𝑗𝑗 , and oriented in the direction of the unit vectors 𝐴𝐴 ⃖⃗𝑏𝑏𝑗𝑗 so that

⃖⃖⃗𝐵𝐵U = ⃖⃖⃗𝐵𝐵0 + ⃖⃖⃗𝐵𝐵pri = ⃖⃖⃗𝐵𝐵0 +

𝑁𝑁
∑

𝑗𝑗=1

𝐵𝐵𝑗𝑗𝑒𝑒
−𝑖𝑖(𝜔𝜔𝑗𝑗 𝑡𝑡−𝛿𝛿𝑗𝑗) ⃖⃗𝑏𝑏𝑗𝑗 (1)

The primary field frequencies induce oscillating dipole moments 𝐴𝐴 ⃖⃖⃖⃗𝑀𝑀𝑗𝑗 = −(4𝜋𝜋∕2𝜇𝜇0)𝐴𝐴𝑗𝑗𝑒𝑒
𝑖𝑖𝑖𝑖𝑗𝑗𝐵𝐵𝑗𝑗

⃖⃗𝑏𝑏𝑗𝑗𝑟𝑟
3
𝑚𝑚 , with ampli-

tudes, �� and phase lags +� + �� relative to that of the driving field (𝐴𝐴 𝐴𝐴𝑗𝑗 − 𝛿𝛿𝑗𝑗 ). The induced field is given by

⃖⃖⃗𝐵𝐵ind =

𝑁𝑁
∑

𝑗𝑗=1

𝜇𝜇0

4𝜋𝜋

3(�⃗�𝑟 ∙ ⃖⃖⃖⃗𝑀𝑀𝑗𝑗)�⃗�𝑟 − 𝑟𝑟
2 ⃖⃖⃖⃗𝑀𝑀𝑗𝑗

𝑟𝑟5
 

= −

𝑁𝑁
∑

𝑗𝑗=1

𝐴𝐴𝑗𝑗𝑒𝑒
−𝑖𝑖(𝜔𝜔𝑗𝑗 𝑡𝑡−𝜑𝜑𝑗𝑗−𝛿𝛿𝑗𝑗 )𝐵𝐵pri

3(�⃗�𝑟 ∙ ⃖⃗𝑏𝑏)�⃗�𝑟 − 𝑟𝑟
2 ⃖⃗𝑏𝑏

2𝑟𝑟5
𝑟𝑟
3
𝑚𝑚 (2)

Figure 2. Uranus's time variable magnetic field as experienced by Ariel. (a) Three field components, where x points toward Uranus, y points opposite the orbital 
velocity of the moon, and z completes the triad. The synodic period is labeled. (b) Zoom-in to gray boxed region in (a), showing the presence of additional frequencies 
modulating and interfering with the synodic frequency.
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for radial position from the center of the moon, 𝐴𝐴 �⃗�𝑟 , and where

𝐴𝐴𝑗𝑗𝑒𝑒
𝑖𝑖𝑖𝑖𝑗𝑗 =

(

𝑟𝑟0

𝑟𝑟𝑚𝑚

)3
𝑅𝑅𝑗𝑗𝐽𝐽5∕2[(𝑟𝑟𝑚𝑚 − 𝑑𝑑)𝑘𝑘𝑗𝑗] − 𝐽𝐽−5∕2[(𝑟𝑟𝑚𝑚 − 𝑑𝑑)𝑘𝑘𝑗𝑗]

𝑅𝑅𝑗𝑗𝐽𝐽1∕2[(𝑟𝑟𝑚𝑚 − 𝑑𝑑)𝑘𝑘𝑗𝑗] − 𝐽𝐽−1∕2[(𝑟𝑟𝑚𝑚 − 𝑑𝑑)𝑘𝑘𝑗𝑗]
 (3)

with

Figure 3. Periodogram of the x-component of Uranus's magnetic field as experienced by the major moons. There is a rich spectrum of frequencies including the 
synodic and its harmonics (red), the orbital frequency and its harmonics (orange), and beats between the synodic and orbital frequency harmonics (green). Dashed lines 
denote 1 nT sensitivity of typical spacecraft magnetometry investigations. (a) Miranda. (b) Ariel. (c) Umbriel. (d) Titania. (e) Oberon.
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𝑅𝑅𝑗𝑗 =
[(𝑟𝑟𝑚𝑚 − 𝑑𝑑 − ℎ)𝑘𝑘𝑗𝑗]𝑘𝑘𝑗𝑗𝐽𝐽−5∕2[(𝑟𝑟𝑚𝑚 − 𝑑𝑑 − ℎ)𝑘𝑘𝑗𝑗]

3𝐽𝐽3∕2[(𝑟𝑟𝑚𝑚 − 𝑑𝑑 − ℎ)𝑘𝑘𝑗𝑗] − [(𝑟𝑟𝑚𝑚 − 𝑑𝑑 − ℎ)𝑘𝑘𝑗𝑗]𝑘𝑘𝑗𝑗𝐽𝐽1∕2[(𝑟𝑟𝑚𝑚 − 𝑑𝑑 − ℎ)𝑘𝑘𝑗𝑗]
 (4)

Here, 𝐴𝐴 𝐴𝐴𝑚𝑚 are Bessel functions of the first kind and order 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝑗𝑗 =
√

𝑖𝑖𝑖𝑖𝑗𝑗𝜇𝜇0𝜎𝜎 . For the three-layer sphere (i.e., 
𝐴𝐴 𝐴𝐴𝑚𝑚 − 𝑑𝑑 − ℎ > 0), �� is in general nonzero, whereas for the two-layer sphere (i.e., 𝐴𝐴 𝐴𝐴𝑚𝑚 − 𝑑𝑑 − ℎ = 0 ), ��  = 0.

The skin depth, the depth at which the primary field declines by a factor of 1/𝐴𝐴 𝐴𝐴 for a semi-infinite conducting half 
space, is given by 𝐴𝐴 𝐴𝐴 =

√

2∕𝜔𝜔𝑗𝑗𝜇𝜇0𝜎𝜎 . The induction amplitude grows and the phase delay shrinks as the ocean gets 
thicker (i.e., 𝐴𝐴 𝐴 increases) and/or more conductive (𝐴𝐴 𝐴𝐴 increases). When the skin depth approaches the ocean thick-
ness (i.e., 𝐴𝐴 𝐴 ≈ 𝑠𝑠 ), the amplitude and phase lag pass through local maximum and minimum, respectively (Hand & 
Chyba, 2007). Eventually, as these two parameters increase further, a saturated state is reached with �� = 1 and 

𝐴𝐴 𝐴𝐴𝑗𝑗 = 0 . For thin oceans (i.e., 𝐴𝐴 𝐴 𝐴 𝐴𝐴𝑚𝑚 ), Equations 3 and 4 reduce to

𝐴𝐴𝑗𝑗 ≈
2𝑟𝑟𝑚𝑚ℎ

3𝑠𝑠2
=

𝜇𝜇0𝑟𝑟𝑚𝑚ℎ𝜔𝜔𝑗𝑗𝜎𝜎

6
 (5)

Therefore, all other parameters being fixed, larger moons and higher frequency driving fields produce higher 
amplitude induced fields.

Forward modeling the induction field (Equation 2) consists of choosing values for 𝐴𝐴 𝐴 , 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴 and computing 
�� and 𝐴𝐴 𝐴𝐴𝑗𝑗 using Equations 3 and 4. The inverse problem of solving for the three parameters 𝐴𝐴 𝐴 , 𝐴𝐴 𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴 from the 
two observations �� and 𝐴𝐴 𝐴𝐴𝑗𝑗 at a single frequency is clearly nonunique. This is illustrated by the fact that a thick, 
low conductivity ocean will produce a similar amplitude induction field as a thin, conductive ocean (Khurana 
et al., 2009; Seufert et al., 2011). Furthermore, a thick ice shell and thick ocean will have a similar amplitude 
induction field as that of a thin ice and thin ocean (although the phase lag for the latter will be greater). The 
nonuniqueness can be broken by sounding at multiple frequencies, provided that the ocean is near saturation (i.e., 

𝐴𝐴 𝐴 ≈ 𝑠𝑠 ) for at least one of the frequencies.

4. Results
Because most of the variation at the synodic frequency at each moon occurs in the x- and y-components, the 
induction poles for these frequencies lie within ±∼4° of of the equators of all moons but that of Miranda (for 
which it lies with ±∼6°). The induction poles sweep across the moons with the associated induced moments 
oscillating in magnitude at their respective frequencies. This means that spacecraft flybys with closest approaches 
near the equatorial regions of the moons and that sample a widely distributed range of phases will enable the most 
sensitive induction studies.

The amplitude of induced fields depend on 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 , and 𝐴𝐴 𝐴 while the phase depends on 𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴 . The response exhibits a 
degeneracy in which a given measured amplitude and phase are each consistent with a wide range of combina-
tions of 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴 (Figure 4a). The amplitude grows and the phase lag approaches 0 with increasing 𝐴𝐴 𝐴 (as more fluid 
can participate in the induction process) and increasing 𝐴𝐴 𝐴𝐴 (as a given ocean approaches saturation) (Figures 4b 
and 4c). In particular, the 35-18 h range of synodic periods from Miranda out to Oberon have skin depths of 
∼33–46 km and ∼91–130 km for oceans with conductivities like that expected for the relict ocean and briny core 
scenarios, respectively. Following Equation 5, the minimum ocean conductivity and thickness required to gener-
ate a 1-nT amplitude induction field at the surface induction pole grows monotonically with the moons' distance 
from Uranus (and therefore with the amplitude of Uranus' field), with the exception that the order of Ariel and 
Miranda are reversed because of Ariel's 2.5× larger radius (Figure 4a).

We first consider the case of ocean detection. We see that for the estimated conductivities of a relict ocean and 
briny core, surface measurements could detect conducting layers with minimum thicknesses <1 km and <1 km 
(for Miranda) and ranging up to <1 and ∼6 km (for Oberon), respectively under a nominal 50-km thick ice shell 
(Figure 4a). By comparison, oceans <<1 km are detectable at Jupiter's moon Europa; this is much smaller than 
that of the Uranian moons mainly because of Europa's large radius (twice that of Titania) and because it expe-
riences a large synodic amplitude approaching that of Miranda (Figure 4a). Furthermore, for a single flyby of 
Ariel within 200 km of it surface [e.g., that proposed for insertion of a flagship mission into orbit around Uranus 
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(Hofstdater & Simon, 2017)], we find that induced fields for relict oceans of thickness of just a few km as well 
as from the briny core should have amplitudes detectable with a typical magnetometry investigation (Figure S4). 
Likewise, Cochrane, Vance, et al. (2021) have shown that even in the presence of a model ionosphere, a relict 
ocean with just 2 S m −1 conductivity and thickness of <10 km could be detectable.

With respect to ocean characterization, we find that multi-frequency sounding for thick and/or highly conducting 
oceans is likely achievable at least at Miranda and Ariel. In particular, separate determination of ocean thickness, 
ice thickness and ocean conductivity for Ariel may be possible for conductivities >∼1 S m −1 and ocean thick-
nesses >∼20 km (Figures 4b and 4c). Such an investigation could be enabled by multiple flybys of each moon 
and/or dedicated moon orbiters or landers. For lower conductivities and ocean thicknesses, these two parameters 
will likely be degenerate.

Figure 4. Induction fields at the synodic frequencies of the major moons and the Jovian moon Europa at the surface induction pole. (a) Combinations of ocean 
thickness and conductivity for producing a 1 nT amplitude. Solid and dashed curves are for ice thicknesses of 1 km (solid lines) and 50 km (dashed lines). Shown are 
conditions for Miranda (green), Ariel (blue), Umbriel (orange), Titania (pink), Oberon (purple), and Europa (red). Vertical gray bars denote conductivities for briny 
mantle (left) and relict (ocean). (b and c) Amplitude and phase of the response of the induced field for Ariel as function of ocean thickness and conductivity compared 
to two expected interior structures. Dashed curves denote end-member relict ocean, consisting of 30 km-thick ocean with conductivity of 15 S m −1, overlain by a 
170-km thick ice shell. Solid curves denote briny mantle, consisting of 430 km-thick porous, conducting core with conductivity of 2 S m −1 overlain by 150-km thick 
ice shell. Shown is the response to the first (red) and second (blue) harmonics of the synodic frequency. Numerical values of contours correspond to labeled values on 
colorbars. Two colored circles denote briny core (top) (Figure 1b) and 30-km thick relict ocean (bottom) (Figure 1c). Note that electrical conductivities greater than 
20 S m −1 are not expected even for hypersaline solutions due to interactions between ions and the low eutectic temperature of relevant solutions.
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5. Conclusions
The five major moons of Uranus may harbor relict oceans and/or briny cores underneath their ice shells. The 
time-variable Uranian magnetospheric field of Uranus could produce substantial induced magnetic fields in the 
liquid layers of these moons, dominantly at the synodic frequency and its harmonics. For a nominal 50-km 
thick ice layer, relict oceans layers with conductivities of >2 S m −1 that have thicknesses >∼0.4–6 km could be 
detected on the major moons by near-surface magnetic field measurements from a typical spacecraft magnetom-
etry experiment. Multi-frequency sounding from flybys could in principle characterize the ocean thickness and 
conductivity for at least Miranda and Ariel. As such, searching for subsurface oceans on the major moons using 
magnetic induction should be a key science objective of a future mission to the Uranian system.
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